Answer:
1. 63.1. 2.22.5 3. 74.3 4. 56.1
Complete question :
Suppose that of the 300 seniors who graduated from Schwarzchild High School last spring, some have jobs, some are attending college, and some are doing both. The following Venn diagram shows the number of graduates in each category. What is the probability that a randomly selected graduate has a job if he or she is attending college? Give your answer as a decimal precise to two decimal places.
What is the probability that a randomly selected graduate attends college if he or she has a job? Give your answer as a decimal precise to two decimal places.
Answer:
0.56 ; 0.60
Step-by-step explanation:
From The attached Venn diagram :
C = attend college ; J = has a job
P(C) = (35+45)/300 = 80/300 = 8/30
P(J) = (30+45)/300 = 75/300 = 0.25
P(C n J) = 45 /300 = 0.15
1.)
P(J | C) = P(C n J) / P(C)
P(J | C) = 0.15 / (8/30)
P(J | C) = 0.5625 = 0.56
2.)
P(C | J) = P(C n J) / P(J)
P(C | J) = 0.15 / (0.25)
P(C | J) = 0.6 = 0.60
Answer: x > 5
Step-by-step explanation: To solve for <em>x</em> in this inequality, our goal is the same as it would be if this were an equation, to get x by itself on one side.
Since 3 is being subtracted from x, we add 3 to
both sides of the inequality to get x > 5.
When graphing x > 5, we have an open circle on 5 and the
open circle tells us that 5 is not part of our answer.
Then we draw an arrow going to the right to represent
all possible solutions to this inequality, any number greater than 5.
Answer:
x=6
Step-by-step explanation:
8x-11=37
Add 11 to both sides
8x=48
Divide 8 from both sides
x=6
For this case we have the following inequality:
2 ≥ 4 - v
The first thing we must do in this case is to clear the value of v.
We have then:
v ≥ 4 - 2
v ≥ 2
Therefore, the solution set is given by:
[2, inf)
Answer:
See attached image.