Avogadro's number is the number of atoms in one mole of a substance. The number is 6.022 x 10^23 atoms/mol. So, if you have 1 mole of carbon atoms, there will be 6.022 x 10^23 atoms in that sample.
Hope this helps
The first step is to find the number of moles of OH⁻ that reacted with the HCl. To do this multiply 2.00L by 1.50M to get 3 moles of Ca(OH)₂. Then you multiply 3 by 2 (there are 2 moles of OH⁻ per every 1 mole of Ca(OH)₂) to get 6 moles of OH⁻. That means that you needed 6 moles of HCl since 1 mole of HCl contains 1 mole of H⁺ and equal amounts H⁺ and OH⁻ reacted with each other. To find the molarity of the HCl solution you need to divide 6mol by 1L to get 6M. Tat means that the concentration of the acid was 6M.
I hope this helps. Let me know if anything was unclear.
Answer:
wavelength = 0.534×10⁻¹⁶ m
Explanation:
Given data:
Frequency of wave = 5.62 ×10²⁴ Hz
Wavelength = ?
Solution:
Speed of photon = wavelength × frequency
wavelength = speed of photon / frequency
Now we will put the values in formula:
wavelength = 3×10⁸ m/s / 5.62 ×10²⁴ Hz
Hz = s⁻¹
wavelength = 3×10⁸ m/s / 5.62 ×10²⁴ s⁻¹
wavelength = 0.534×10⁻¹⁶ m
Acetic acid is a weak acid. So, the undissociated acid molecules exist in equilibrium with the dissociated form. The equilibrium representing the weak acidic nature of acetic acid is,

The interior of the cell membrane is hydrophobic. So, the membrane allows uncharged species (hydrophobic) to pass through it. Charged groups cannot easily pass through the membrane. We can say acetic acid can easily pass through the membrane when compared to the charged form acetate ion. At low pH, more of the molecule will cross the membrane as most of the acetic acid will be in undissociated and uncharged form at a lower pH.
of acetic acid is around 4.8. So at a pH value less than 4.8, we can say the more of the acetic acid molecules can cross the membrane.
Higher value- mass number
Lower value- atomic number/ number of proton