Answer:
ICMP Echo Request
Explanation:
ICMP Echo Request is a form of probe or message sent by a user to a destination system.
The total number of ions in 38.1 g of SrF₂ is 5.479 x 10²³.
<h3>What are ions?</h3>
Ions are the elements with a charge on them. It happens when they share electrons with other atoms to form a compound.
We have to calculate the total number of ions in 38.1 g of .
The molar mass of SrF₂ = 125.62 g/mol
The number of moles = 38.1 g of 1.0 mol / 125.62 = 0.30329 moles
Given that, total moles of SrF₂ ions in = 1.0 mol of + 2.0 moles of = 3.0 moles
Total moles of ions in 0.30329 moles of
= (0.30329 moles of SrF₂) x 3.0 / 1.0 = 0.90988 mol ions
We know that,
1.0 mole of ions = 6.023 x 10²³ ions
Thus, the number of total ions = ( 0.90988 mol ions) x 6.023 x 10²³ / 1.0 mol = 5.479 x 10²³ ions
Thus, the number of ions is in 38.1 g of 5.479 x 10²³ ions
To learn more about ions, refer to the link:
brainly.com/question/14295820
#SPJ4
Answer:
a.
Explanation:
Assuming that Liquid X is considered to possess a greater viscosity as well as higher surface tension than liquid Y. Then, liquid X will tend to harbour more pressure inside the liquid.
In addition to that, the greater the surface tension, the greater the force required to expand the liquid's surface area.
This in turn makes the force required to make the loop 5% wider to be greater in FX rather than FY.
Thus, option a is the correct answer.
Answer:
34.28 L ( 1.5*22.4 L)
Explanation:
Calculation of the moles of aluminum as:-
Mass = 55 g
Molar mass of aluminum = 26.981539 g/mol
The formula for the calculation of moles is shown below:
Thus,

According to the reaction:-

4 moles of aluminum react with 3 moles of oxygen gas
1 mole of aluminum react with
moles of oxygen gas
2.0384 moles of aluminum react with
moles of oxygen gas
Moles of oxygen gas = 1.5288 moles
At STP,
Pressure = 1 atm
Temperature = 273.15 K
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
1 atm × V = 1.5288 mol × 0.0821 L.atm/K.mol × 273.15 K
⇒V = 34.28 L ( 1.5*22.4 L)
the answer is A. I (iodine)
no worries