The probability that exactly 6 are defective is 0.0792.
Given:
30% of the bulbs in a large box are defective.
If 12 bulbs are selected randomly from the box.
To find:
The probability that exactly 6 are defective.
Solution:
Probability of defective bulbs is:



Probability of non-defective bulbs is:



The probability that exactly 6 are defective is:





Therefore, the probability that exactly 6 are defective is 0.0792.
Learn more:
brainly.com/question/12917164
Answer:
a) N(P) = -6P + 16000
b) slope = -6 computers per dollar
That means the number of computer sold reduce by 6 per dollar increase in price.
c) ∆N = -660 computers
Step-by-step explanation:
Since N(P) is a linear function
N(P) = mP + C
Where m is the slope and C is the intercept.
Case 1
N(1000) = 10000
10000 = 1000m + C ....1
Case 2
N(1700) = 5800
5800 = 1700m + C ....2
Subtracting equation 1 from 2
700m = 5800 - 10000
m = -4200/700
m = -6
Substituting m = -6 into eqn 1
10000 = (-6)1000 + C
C = 10000+ 6000 = 16000
N(P) = -6P + 16000
b) slope = -6 computers per dollar
That means the number of computer sold reduce by 6 per dollar increase in price.
Slope is the change in number of computer sold per unit Change in price.
c) since slope m = -6 computers per dollar
∆P = 110 dollars
∆N = m × ∆P
Substituting the values,
∆N = -6 computers/dollar × 110 dollars
∆N = -660 computers.
The number of computer sold reduce by 660 when the price increase by 110 dollars
Answer:
From your question, I am assuming you are talking about an absolute value graph. In this case the answer would be y = |2 + 6|
Step-by-step explanation: Always remember, when you are graphing absolute value graphs:
When you shift left or right, you put the amount you are shifting inside the absolute value sign.
When you are shifting up or down, you put the amount you are shifting outside the absolute value sign.
When shifting left on a graph, you usually think of subtraction. However, when dealing with absolute value graphs, when you are shifting left, you use addition, as you can see in this problem.
The same goes for right. You use subtraction when shifting right, contrary to what you may think.
However, when you go up, you still use addition, and when you shift down, you still use subtraction.