I think it might be lyosomes as they help break down waste and other stuff in a cell.
Answer:
True
Explanation:
During contraction of skeletal muscle fibers, the thin filaments slide inward toward the A band's center as a result of cycles of crossbridge binding and bending.
When looking at a Neuromuscular Junction (NMJ), we know that neurotransmitters (NT) are released from the presynaptic cell and they then bind to the receptors that are located on the postsynaptic cell - this causes the effect of the NT being released.
So we are told that NT are still being released, however they are not having an effect. This would mean that they are probably being blocked by something - in this case, it seems that the neurotoxin is the culprit in the blocking of these receptors.
Therefore, if the NT cannot bind to the receptors on the postsynaptic cell, they are not going to have any effect, no matter how much NT is being released.
So the answer in this case is: The neurotoxin is most likely C) Blocking the receptors on the postsynaptic cell.
For the given situation above, I'm afraid I cannot answer your question since a pedigree chart isn't provided along with the question. You can resubmit your question together with the chart and we'll analyze it. Thank you for posting though. Here is what pedigree analysis is about.
Scientists have devised an approach, called pedigree analysis<span>, to study the inheritance of genes in humans. Pedigree analysis is also useful when studying any population when progeny data from several generations is limited. Pedigree analysis is also useful when studying species with a long generation time.</span>
Heterospory, highly reduced gametophytes, ovules, pollen, seeds are the five adaptations common to all seed plants that ensure their success in the adaptation to land. Three things: The gametophytes of seed plants are reduced and dependent upon the parent sporophyte which protects them (particularly in the case of the female gametophyte). Pollen is covered with sporopollenin which is resistant to physical factors in the environment. The structure of the seed protects the next generation sporophyte and allows it to remain dormant until conditions are right for germination, development and growth.