Answer:

Step-by-step explanation:
In essence, one needs to work their way backwards to solve this problem. Use the information to construct the function.
The function has verticle asymptotes at (x = 4) and (x = 5). This means that the denominator must have (x - 4) and (x - 5) in it. This is because a verticle asymptote indicates that the function cannot have a value at these points, the function jumps at these points. This is because the denominator of a fraction cannot be (0), the values (x - 4) and (x - 5) ensure this. Since if (x) equals (4) or (5) in this situation, the denominator would be (0) because of the zero product property (this states that any number times zero equals zero). So far we have assembled the function as the following:

The function has x-intercepts at (6, 0), and (0, 10). This means that the numerator must equal (0) when (x) is (6) or (10). Using similar logic that was applied to find the denominator, one can conclude that the numerator must be (
). Now one has this much of the function assembled

Finally one has to include the y-intercept of (0, 120). Currently, the y-intercept is (60). This is found by multiplying the constants together. (6 * 10) equals (60). One has to multiply this by (2) to get (120). Therefore, one must multiply the numerator by (2) in order to make the y-intercept (120). Thus the final function is the following:

The maximum volume would be when the bottom of the box is a square.
The perimeter of the bottom is 36, so the side of the square would be 36/4 = 9 cm.
Then to find volume multiply the length by the width by the height:
Volume = 9 x 9 x 4 = 324 cm^3
The answer would be a.
-5^7/-5^2=5^7/5^2= 5^(7-2)=5^5 this is the answer
If five peppers cost $2.25 then you could buy 40 peppers with $18 dollars and have $2 left over