Perimeter is 10 units while the area is 8 units I believe but that’s just by counting the boxes
There are two ways you can write it:
1. 30 + 6 + (1 × 1/10) + (3 × 1/100)
2. 30 + 6 + 0.1 + 0.03
Either is correct :)
Answer:
x = -7/4
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
5x + 3 - 2x = 12 + 7x - 2
<u>Step 2: Solve for </u><em><u>x</u></em>
- Combine like terms: 3x + 3 = 7x + 10
- [SPE] Subtract 3x on both sides: 3 = 4x + 10
- [SPE] Subtract 10 on both sides: -7 = 4x
- [DPE] Divide 4 on both sides: -7/4 = x
- Rewrite: x = -7/4
<u>Step 3: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in <em>x</em>: 5(-7/4) + 3 - 2(-7/4) = 12 + 7(-7/4) - 2
- Multiply: -35/4 + 3 + 7/2 = 12 - 49/4 - 2
- Add: -23/4 + 7/2 = 12 - 49/4 - 2
- Add: -9/4 = 12 - 49/4 - 2
- Subtract: -9/4 = -1/4 - 2
- Subtract: -9/4 = -9/4
Here we see that -9/4 does indeed equal -9/4.
∴ x = -7/4 is the solution to the equation.
Answer:
We have the equation
![c_1\left[\begin{array}{c}0\\0\\0\\1\end{array}\right] +c_2\left[\begin{array}{c}0\\0\\3\\1\end{array}\right] +c_3\left[\begin{array}{c}0\\4\\3\\1\end{array}\right] +c_4\left[\begin{array}{c}8\\4\\3\\1\end{array}\right] =\left[\begin{array}{c}0\\0\\0\\0\end{array}\right]](https://tex.z-dn.net/?f=c_1%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_2%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_3%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C4%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_4%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C4%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Then, the augmented matrix of the system is
![\left[\begin{array}{cccc}0&0&0&8\\0&0&4&4\\0&3&3&3\\1&1&1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D0%260%260%268%5C%5C0%260%264%264%5C%5C0%263%263%263%5C%5C1%261%261%261%5Cend%7Barray%7D%5Cright%5D)
We exchange rows 1 and 4 and rows 2 and 3 and obtain the matrix:
![\left[\begin{array}{cccc}1&1&1&1\\0&3&3&3\\0&0&4&4\\0&0&0&8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%261%261%261%5C%5C0%263%263%263%5C%5C0%260%264%264%5C%5C0%260%260%268%5Cend%7Barray%7D%5Cright%5D)
This matrix is in echelon form. Then, now we apply backward substitution:
1.

2.

3.

4.

Then the system has unique solution that is
and this imply that the vectors
are linear independent.