8 hours is twice as many as 4:
Multiply the number of windows in 4 hours by 2:
32 x 2 = 64 windows in 8 hours
The correct answer is C) (5m^50 - 11n^8) (5m^50 + 11n^8)
We can tell this because of the rule regarding factoring the difference of two perfect squares. When we have two squares being multiplied, we can use the following rule.
a^2 - b^2 = (a - b)(a + b)
In this case, or first term is 25m^100. So we can solve that by setting it equal to a^2.
a^2 = 25m^100 -----> take the square root of both sides
a = 5m^50
Then we can do the same for the b term.
b^2 = 121n^16 ----->take the square root of both sides
b = 11n^8
Now we can use both in the equation already given
(a - b)(a + b)
(5m^50 - 11n^16)(5m^50 + 11n^16)
Answer:
(x−2)^3=x^3−6x^2+12x-8
Step-by-step explanation:
if you are talking about the binomial (x−2)^3 you must expand then simplify. (x-2)3 you would just remove the parenthesizes and multiply -2 with 3 to get x-6 but I think you meant (x-2)^3
Answer: Choice B
There is not convincing evidence because the interval contains 0.
========================================================
Explanation:
The confidence interval is (-0.29, 0.09)
This is the same as writing -0.29 < p1-p1 < 0.09
The thing we're trying to estimate (p1-p2) is between -0.29 and 0.09
Because 0 is in this interval, it is possible that p1-p1 = 0 which leads to p1 = p2.
Therefore, it is possible that the population proportions are the same.
The question asks " is there convincing evidence of a difference in the true proportions", so the answer to this is "no, there isn't convincing evidence". We would need both endpoints of the confidence interval to either be positive together, or be negative together, for us to have convincing evidence that the population proportions are different.
Answer: The answer is cosine of that acute angle.
Step-by-step explanation: We are to find the ratio of the adjacent side of an acute angle to the hypotenuse.
In the attached figure, we draw a right-angled triangle ABC, where ∠ABC is a right angle, and ∠ACB is an acute angle.
Now, side adjacent to ∠ACB is BC, which is the base with respect to this particular angle, and AC is the hypotenuse.
Now, the ratio is given by

Thus, the ratio is cosine of the acute angle.