Answer:
Step-by-step explanation:
Find two linear functions p(x) and q(x) such that (p (f(q(x)))) (x) = x^2 for any x is a member of R?
Let p(x)=kpx+dp and q(x)=kqx+dq than
f(q(x))=−2(kqx+dq)2+3(kqx+dq)−7=−2(kqx)2−4kqx−2d2q+3kqx+3dq−7=−2(kqx)2−kqx−2d2q+3dq−7
p(f(q(x))=−2kp(kqx)2−kpkqx−2kpd2p+3kpdq−7
(p(f(q(x)))(x)=−2kpk2qx3−kpkqx2−x(2kpd2p−3kpdq+7)
So you want:
−2kpk2q=0
and
kpkq=−1
and
2kpd2p−3kpdq+7=0
Now I amfraid this doesn’t work as −2kpk2q=0 that either kp or kq is zero but than their product can’t be anything but 0 not −1 .
Answer: there are no such linear functions.
Answer:
C
Step-by-step explanation:
If the parent function is function
and
then
- the graph of the function
is translated a units to the right graph of the parent function; - the graph of the function
is translated a units to the left graph of the parent function; - the graph of the function
is translated a units up graph of the parent function; - the graph of the function
is translated a units down graph of the parent function.
In your case, the grapgh of the function
is translated 2 units up the graph of the function ![y=2^x.](https://tex.z-dn.net/?f=y%3D2%5Ex.)
Answer:
The discount is 29.95
Step-by-step explanation:
599 x .05= 29.95
Answer:
The mass of the grains = 120 ± 1 g
Step-by-step explanation:
we are given the following:
Total mass of container + grains = 185 grams
Mass of container = 65 grams
Therefore, mass of grains is calculated as follows:
Mass of grains = ( Mass of container + grains) - mass of container
= 185 - 65 = 120 grams.
since the scale has an absolute uncertainty of 1 g, the mass of the grains is written as 120 ± 1 g