Answer:
large grain sizes, more precipitation, warmer temperatures.
Explanation:
Soil is the thin layer of material covering the earth's surface and they are usually formed through the process of weathering of rocks. The soil consists of mainly mineral particles, organic materials, air, water and living organisms and they interact with each other.
Large grain sizes, more precipitation, warmer temperatures are the factors that increase the rate of soil formation.
A human with heterozygous genotype can have a dominant phenotype if one of the alleles complete mask the effects of the other.
- Heterozygous genotype involves two different alleles, unlike homzygous genotypes in which the alleles are the same.
- When the two alleles of an heterozygous genotype exert equal effects on one another, they are said to be codominant.
- When one of the alleles of an heterozygous genotype incompletely exert its effects on the other allele, it is said to be incomplete dominance.
- When one of the alleles complete dominates and masks the effects of the other allele, it is said to be dominant.
Hence, a dominant allele will always produce a dominant phenotype even if the genotype of the organism is heterozygous.
More on genotypes can be found here: brainly.com/question/14398652
Answer: The female had the genotype XHXh, and produced the two gametes seen at the left side of the diagram. The male had the genotype XHY0, and produced the two gametes seen at the right side of the diagram.
Explanation:
Answer: The Heart
Explanation:
The blood circulatory system (cardiovascular system) delivers nutrients and oxygen to all cells in the body. It consists of the heart and the blood vessels running through the entire body. The arteries carry blood away from the heart; the veins carry it back to the heart. The system of blood vessels resembles a tree: The “trunk” – the main artery (aorta) – branches into large arteries, which lead to smaller and smaller vessels. The smallest arteries end in a network of tiny vessels known as the capillary network.
There are two types of blood circulatory system in the human body, which are connected: The systemic circulation provides organs, tissues and cells with blood so that they get oxygen and other vital substances. The pulmonary circulation is where the fresh oxygen we breathe in enters the blood. At the same time, carbon dioxide is released from the blood.
Blood circulation starts when the heart relaxes between two heartbeats: The blood flows from both atria (the upper two chambers of the heart) into the ventricles (the lower two chambers), which then expand. The following phase is called the ejection period, which is when both ventricles pump the blood into the large arteries.
In the systemic circulation, the left ventricle pumps oxygen-rich blood into the main artery (aorta). The blood travels from the main artery to larger and smaller arteries and into the capillary network. There the blood drops off oxygen, nutrients and other important substances and picks up carbon dioxide and waste products. The blood, which is now low in oxygen, is collected in veins and travels to the right atrium and into the right ventricle.
This is where pulmonary circulation begins: The right ventricle pumps low-oxygen blood into the pulmonary artery, which branches off into smaller and smaller arteries and capillaries. The capillaries form a fine network around the pulmonary vesicles (grape-like air sacs at the end of the airways). This is where carbon dioxide is released from the blood into the air inside the pulmonary vesicles, and fresh oxygen enters the bloodstream. When we breathe out, carbon dioxide leaves our body. Oxygen-rich blood travels through the pulmonary veins and the left atrium into the left ventricle. The next heartbeat starts a new cycle of systemic circulation. Below is an attachment of a diagram that explains the connection between pulmonary and systemic circulation from google.