Answer:
x=0
Step-by-step explanation:
First distribute -4 to x and -5 and get -4x+20-25=-5
Then you combine like terms and get -4x-5=-5
Then add 5 to both sides and get -4x=0
Then divide both sides by -4 and get x=0
A and B lie on the line, yes, but what specifically are you supposed to do? Looks like your problem statement was cut off before you'd finished typing it in.
You say your line passes thru (-2,5) and has a slope of 2/3? Then, using the point-slope formula,
y-5 = (2/3)(x+2) This is the general equation for your line.
Now let's play around with B(-2,y). Suppose we subst. the x-coordinate of B, which is -2, into the equation y-5 = (2/3)(x+2); we get y-5 = (2/3)(-2+2) = 0. This tells us that y must be 5. But we already knew that!!
So, please review the original problems with its instructions and this discussion and tell me what you need to know from this point on.
Answer:
1-3x/5
Give me brainiest
Step-by-step explanation:
Answer:
66.48% of full-term babies are between 19 and 21 inches long at birth
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean length of 20.5 inches and a standard deviation of 0.90 inches.
This means that 
What percentage of full-term babies are between 19 and 21 inches long at birth?
The proportion is the p-value of Z when X = 21 subtracted by the p-value of Z when X = 19. Then
X = 21



has a p-value of 0.7123
X = 19



has a p-value of 0.0475
0.7123 - 0.0475 = 0.6648
0.6648*100% = 66.48%
66.48% of full-term babies are between 19 and 21 inches long at birth