The answer is 13/20. So 3/5 is equal to 6/10 so you're looking for the fraction that's half of 7/10 and 6/10 which is 6.5/10 but you can't use decimals in a fraction so you multiply both sides by 10 which would equal 65/100 and simply, and that would be 13/20.
Answer:
7
Step-by-step explanation:
Because 35/5=7 so 1/5 of 35 would = 7
This intersection means that u have to find the same number in both sets
the answer is 3 , 7 , 13
i am a mathematics teacher. if anything to ask please pm me
Answer:
16/15
Step-by-step explanation:

The two minus signs cancel, so the result is positive.
Answer:
- h = -16t^2 + 73t + 5
- h = -16t^2 + 5
- h = -4.9t^2 + 73t + 1.5
- h = -4.9t^2 + 1.5
Step-by-step explanation:
The general equation we use for ballistic motion is ...

where g is the acceleration due to gravity, v₀ is the initial upward velocity, and h₀ is the initial height.
The values of g commonly used are -32 ft/s², or -4.9 m/s². Units are consistent when the former is used with velocity in ft/s and height in feet. The latter is used when velocity is in m/s, and height is in meters.
_____
Dwayne throws a ball with an initial velocity of 73 feet/second. Dwayne holds the ball 5 feet off the ground before throwing it. (h = -16t^2 + 73t + 5)
A watermelon falls from a height of 5 feet to splatter on the ground below. (h = -16t^2 + 5)
Marcella shoots a foam dart at a target. She holds the dart gun 1.5 meters off the ground before firing. The dart leaves the gun traveling 73 meters/second. (h = -4.9t^2 + 73t + 1.5)
Greg drops a life raft off the side of a boat 1.5 meters above the water. (h = -4.9t^2 + 1.5)
_____
<em>Additional comment on these scenarios</em>
The dart and ball are described as being launched at 73 units per second. Generally, we expect launches of these kinds of objects to have a significant horizontal component. However, these equations are only for <em>vertical</em> motion, so we must assume the launches are <em>straight up</em> (or that the up-directed component of motion is 73 units/second).