Part A
The given line passes through (-2,2) and it is parallel to the line

We need to determine the slope of this line by writing it in slope -intercept form.


The slope of this line is

The line parallel to this line also has slope

The equation is

We substitute (-2,2)


The required equation is

PART B
The given line is

The slope of this line is

The slope of the line perpendicular to it is

The equation of the line is

We substitute the point, (-2,2)



The equation of the perpendicular line is
Answer:
A
Step-by-step explanation:
After doing long division we then know that 2,952 ÷24 = 123
We 1st follow pemdas knowing this we solve the equations in parenthesis 1st
(2,400 ÷ 24) + (480 ÷ 24) + (72 ÷ 24)
2,400 ÷ 24 = 100
480 ÷ 24 = 20
72 ÷ 24 = 3
We can then rewrite the equation as
100 + 20 + 3 We then solve left to right
100 + 20 = 120
120 + 3 = 123
Answer:
ii
Step-by-step explanation:
i
Answer:
A(t) = 300 -260e^(-t/50)
Step-by-step explanation:
The rate of change of A(t) is ...
A'(t) = 6 -6/300·A(t)
Rewriting, we have ...
A'(t) +(1/50)A(t) = 6
This has solution ...
A(t) = p + qe^-(t/50)
We need to find the values of p and q. Using the differential equation, we ahve ...
A'(t) = -q/50e^-(t/50) = 6 - (p +qe^-(t/50))/50
0 = 6 -p/50
p = 300
From the initial condition, ...
A(0) = 300 +q = 40
q = -260
So, the complete solution is ...
A(t) = 300 -260e^(-t/50)
___
The salt in the tank increases in exponentially decaying fashion from 40 grams to 300 grams with a time constant of 50 minutes.
Answer:
I THINk i did this but i will try to reamber
Step-by-step explanation: