1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
V125BC [204]
2 years ago
15

Matters has 456:8 What s his rate

Mathematics
1 answer:
Olegator [25]2 years ago
3 0

We are given ratio 456:8.

The given ratio can be written in fraction form as \frac{456}{8}

In order to find the rate, we need to divide 456 by 8, because it would give the unit value.

When we divide 456 by 8, we first take multiple of 8 closer to the number 45.

8*6=48 but it's greater than 45, so we would take 8*5 =40.

Subtracting 40 from 45, we get 5.

Getting 6 down, we get 56. Take multiple of 8 upto 56.

8*7= 56.

56 -56=0.

So, on dividing 456 by 8 we got 57.

Therefore, rate is 57 per unit.


You might be interested in
HELP I WILL GIVE BRAINLIEST
masya89 [10]
1. 7b + 10
2. 13x
3. 4v
4. 2 + 2k
5. 12n
6. 0
7. 8 + 12x
8. 6v + 1
9. 7n
10. 7p
11. 1
12. 18 + 5n
13. 10x + 84
14. 18p - 40
3 0
2 years ago
<img src="https://tex.z-dn.net/?f=%20%5Csqrt%5B45%5D%7B55%3F%7D%20" id="TexFormula1" title=" \sqrt[45]{55?} " alt=" \sqrt[45]{55
m_a_m_a [10]

Answer:

6π cm³

Step-by-step explanation:

V = Ah ( A is the base area and h the height ), then

3πh = 18π ( divide both sides by 3π )

h =  = 6

Then the height of the smaller cylinder = 6 - 3 = 3 cm

V = 3π × 3 = 9π cm³ ← volume of smaller can

Step-by-step explanation:

7 0
2 years ago
Say you have a tic toe box of 3 by 3 how do you make each diagonal and vertical line equal 15 only using # 1-10
SpyIntel [72]

| 8 |  | 1 |  | 6 |
-------------------
| 3 |  | 5 |  | 7 |
-------------------
| 4 |  | 9 |  | 2 |

7 0
3 years ago
A fish tank holds 25 gallons of water. How many quarts of water does the fish tank hold?
Stels [109]

Answer:

100 gallons

Step-by-step explanation:

so 1 gallon equals 4quarts multiply that by 25 you get 100 so there you go

3 0
2 years ago
How do I evaluate this using trigonometric substitution?<br><br>∫dx/(81x^2+4)^2
Daniel [21]

Answer:

\displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C

General Formulas and Concepts:

<u>Alg I</u>

  • Terms/Coefficients
  • Factor
  • Exponential Rule [Dividing]: \displaystyle \frac{b^m}{b^n} = b^{m - n}

<u>Pre-Calc</u>

[Right Triangle Only] Pythagorean Theorem: a² + b² = c²

  • a is a leg
  • b is a leg
  • c is hypotenuse

Trigonometric Ratio: \displaystyle sec(\theta) = \frac{1}{cos(\theta)}

Trigonometric Identity: \displaystyle tan^2\theta + 1 = sec^2\theta

TI: \displaystyle sin(2x) = 2sin(x)cos(x)

TI: \displaystyle cos^2(\theta) = \frac{cos(2x) + 1}{2}

<u>Calc</u>

Integration Rule [Reverse Power Rule]:                                                                \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

IP [Addition/Subtraction]:                                                             \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

U-Trig Substitution: x² + a² → x = atanθ

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \int {\frac{dx}{(81x^2 + 4)^2}}

<u>Step 2: Identify Sub Variables Pt.1</u>

Rewrite integral [factor expression]:

\displaystyle \int {\frac{dx}{[(9x)^2 + 4]^2}}

Identify u-trig sub:

\displaystyle x = atan\theta\\9x = 2tan\theta \rightarrow x = \frac{2}{9}tan\theta\\dx = \frac{2}{9}sec^2\theta d\theta

Later, back-sub θ (integrate w/ respect to <em>x</em>):

\displaystyle tan\theta = \frac{9x}{2}  \rightarrow \theta = arctan(\frac{9x}{2})

<u>Step 3: Integrate Pt.1</u>

  1. [Int] Sub u-trig variables:                                                                                 \displaystyle \int {\frac{\frac{2}{9}sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta
  2. [Int] Rewrite [Int Prop - MC]:                                                                           \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta
  3. [Int] Evaluate exponents:                                                                                \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4tan^2\theta + 4]^2}} \ d\theta
  4. [Int] Factor:                                                                                                      \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4(tan^2\theta + 1)]^2}} \ d\theta
  5. [Int] Rewrite [TI]:                                                                                              \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4sec^2\theta]^2}} \ d\theta
  6. [Int] Evaluate exponents:                                                                                \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{16sec^4\theta} \ d\theta
  7. [Int] Rewrite [Int Prop - MC]:                                                                          \displaystyle \frac{1}{72} \int {\frac{sec^2\theta}{sec^4\theta} \ d\theta
  8. [Int] Divide [ER - D]:                                                                                         \displaystyle \frac{1}{72} \int {\frac{1}{sec^2\theta} \ d\theta
  9. [Int] Rewrite [TR]:                                                                                            \displaystyle \frac{1}{72} \int {cos^2\theta} \ d\theta
  10. [Int] Rewrite [TI]:                                                                                              \displaystyle \frac{1}{72} \int {\frac{cos(2\theta) + 1}{2}} \ d\theta
  11. [Int] Rewrite [Int Prop - MC]:                                                                          \displaystyle \frac{1}{144} \int {cos(2\theta) + 1} \ d\theta
  12. [Int] Rewrite [Int Prop - A/S]:                                                                          \displaystyle \frac{1}{144} [\int {cos(2\theta) \ d\theta + \int {1} \ d\theta]  

<u>Step 4: Identify Sub Variables Pt.2</u>

Determine u-sub for trig int:

u = 2θ

du = 2dθ

<u>Step 5: Integrate Pt.2</u>

  1. [Ints] Rewrite [Int Prop - MC]:                                                                       \displaystyle \frac{1}{144} [\frac{1}{2} \int {2cos(2\theta) \ d\theta + \int {1 \theta ^0} \ d\theta]
  2. [Int] U-Sub:                                                                                                     \displaystyle \frac{1}{144} [\frac{1}{2} \int {cos(u) \ du + \int {1 \theta ^0} \ d\theta]
  3. [Ints] Integrate [Trig/Int Rule - RPR]:                                                             \displaystyle \frac{1}{144} [\frac{1}{2} sin(u) + \theta + C]
  4. [Expression] Back Sub:                                                                                 \displaystyle \frac{1}{144} [\frac{1}{2} sin(2 \theta) + arctan(\frac{9x}{2}) + C]
  5. [Exp] Rewrite [TI]:                                                                                           \displaystyle \frac{1}{144} [\frac{1}{2}(2sin(\theta)cos(\theta)) + arctan(\frac{9x}{2}) + C]
  6. [Exp] Multiply:                                                                                                 \displaystyle \frac{1}{144} [sin(\theta)cos(\theta) + arctan(\frac{9x}{2}) + C]
  7. [Exp] Back Sub:                                                                                             \displaystyle \frac{1}{144} [sin(arctan(\frac{9x}{2}))cos(arctan(\frac{9x}{2})) + arctan(\frac{9x}{2}) + C]

<u>Step 6: Triangle</u>

Find trig values:

\displaystyle tan\theta = \frac{9x}{2}

\displaystyle \theta = arctan(\frac{9x}{2})

tanθ = opposite / adjacent; solve hypotenuse of right triangle, determine trig ratios:

sinθ = opposite / hypotenuse

cosθ = adjacent / hypotenuse

Leg <em>a</em> = 2

Leg <em>b</em> = 9x

Leg <em>c</em> = ?

  1. Sub variables [PT]:                                                                                         \displaystyle 2^2 + (9x)^2 = c^2
  2. Evaluate exponents:                                                                                      \displaystyle 4 + 81x^2 = c^2
  3. [Equality Property] Square root both sides:                                                  \displaystyle \sqrt{4 + 81x^2} = c
  4. Rewrite:                                                                                                           c = \sqrt{81x^2 + 4}

Substitute into trig ratios:

\displaystyle sin\theta = \frac{9x}{\sqrt{81x^2 + 4}}

\displaystyle cos\theta = \frac{2}{\sqrt{81x^2 + 4}}

<u>Step 7: Integrate Pt.3</u>

  1. [Exp] Sub variables [TR]:                                                                               \displaystyle \frac{1}{144} [\frac{9x}{\sqrt{81x^2 + 4}} \cdot \frac{2}{\sqrt{81x^2 + 4}} + arctan(\frac{9x}{2}) + C]
  2. [Exp] Multiply:                                                                                                 \displaystyle \frac{1}{144} [\frac{18x}{81x^2 + 4} + arctan(\frac{9x}{2}) + C]
  3. [Exp] Distribute:                                                                                             \displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C
3 0
2 years ago
Other questions:
  • You make homemade lip balm. About 11% of the lip balm is made from beeswax. You make 4 2/5 teaspoons of the lip balm. About how
    10·1 answer
  • Which number is prime ?<br> A : 8<br> B : 6<br> C : 13 <br> D : 10
    6·1 answer
  • The gas tank is 20% full. the price of gas is 2.50. find the cost to fill the tank. 1 gal = 231 cubic in.
    6·1 answer
  • A proper unbiased coin was tossed 10 times for 3 trials, giving TTHHTHTTHH, TTTTTHHHHH, and THTHHTHTTH (T = Tails; H = Heads). W
    14·1 answer
  • Select the all numbers below which are rational numbers.
    12·2 answers
  • Gerald would like to add a dental and vision option to the health insurance plan he purchased through his employer. In addition
    6·2 answers
  • The two angles illustrated in the picture are what kinds of angles?
    11·1 answer
  • A car accelerates
    6·2 answers
  • What is the measure of each angle in the circle?<br> 36°<br> 40°<br> 45°<br> 60°
    8·1 answer
  •  Write an expression for the area of the triangle.( The area of a triangle is 1/2 •base • height.)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!