P(4)= 1/8
This is because there are 8 equal parts and 4 is just one of those 8 parts.
She should expect it to land on a even number 84 times
11/15=.7333333 so the one with the line above the 3 only
Answer:
P(a junior or a senior)=1
Step-by-step explanation:
The formula of the probability is given by:

Where P(A) is the probability of occurring an event A, n(A) is the number of favorable outcomes and N is the total number of outcomes.
In this case, N is the total number of the students of statistics class.
N=18+10=28
The probability of the union of two mutually exclusive events is given by:

Therefore:
P(a junior or a senior) =P(a junior)+P(a senior)
Because a student is a junior or a senior, not both.
n(a junior)=18
n(a senior)=10
P(a junior)=18/28
P(a senior) = 10/28
P(a junior or a senior) = 18/28 + 10/28
Solving the sum of the fractions:
P(a junior or a senior) = 28/28 = 1