Answer:
Yea it does
Step-by-step explanation:
Answer:
73
Step-by-step explanation:
to find the mean you need to add up all grades and divide if by the number of terms you added
(82 + 88 + x) ÷ 3 = 69 (since we don't know the third grade let's call it x)
170 + x = 69 × 3
x = 37
if the digits transposed the the actual grade would be 73
Answer:
$0.025x² . . . where x is a number of percentage points
Step-by-step explanation:
The multiplier for semi-annual compounding will be ...
(1 + x/2)² = 1 + x + x²/4
The multiplier for annual compounding will be ...
1 + x
The multiplier for semiannual compounding is greater by ...
(1 + x + x²/4) - (1 + x) = x²/4
Maria's interest will be greater by $1000×(x²/4) = $250x², where x is a decimal fraction.
If x is a percent value, as in x = 6 when x percent = 6%, then the difference amount is ...
$250·(x/100)² = $0.025x² . . . where x is a number of percentage points
_____
<u>Example</u>:
For x percent = 6%, the difference in interest earned on $1000 for one year is $0.025×6² = $0.90.
Answer:
Step-by-step explanation:
Given a general quadratic formula given as ax²bx+c = 0
To generate the general formula to solve the quadratic equation, we can use the completing the square method as shown;
Step 1:
Bringing c to the other side
ax²+bx = -c
Dividing through by coefficient of x² which is 'a' will give:
x²+(b/a)x = -c/a
- Completing the square at the left hand side of the equation by adding the square of half the coefficient x i.e (b/2a)² and adding it to both sides of the equation we have:
x²+(b/a)x+(b/2a)² = -c/a+(b/2a)²
(x+b/2a)² = -c/a+(b/2a)²
(x+b/2a)² = -c/a + b²/4a²
- Taking the square root of both sides
√(x+b/2a)² = ±√-c/a + b²/√4a²
x+b/2a = ±√(-4ac+b²)/√4a²
x+b/2a =±√b²-4ac/2a
- Taking b/2a to the other side
x = -b/2a±√√b²-4ac/2a
Taking the LCM:
x = {-b±√b²-4ac}/2a
This gives the vertex form with how it is used to Solve a quadratic equation.