Answer:
A. y - 7 = -4(x + 2)
Step-by-step explanation:
Insert the coordinates into the formula with their CORRECT signs. Remember, in the Point-Slope Formula, <em>y</em><em> </em><em>-</em><em> </em><em>y</em><em>₁</em><em> </em><em>=</em><em> </em><em>m</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>x</em><em>₁</em><em>)</em><em>,</em><em> </em>all the negative symbols give the OPPOSITE term of what they really are.
Answer:
Step-by-step explanation:
Answer:
True, see proof below.
Step-by-step explanation:
Remember two theorems about continuity:
- If f is differentiable at the point p, then f is continuous at p. This also applies to intervals instead of points.
- (Bolzano) If f is continuous in an interval [a,b] and there exists x,y∈[a,b] such that f(x)<0<f(y), then there exists some c∈[a,b] such that f(c)=0.
If f is differentiable in [0,4], then f is continuous in [0,4] (by 1). Now, f(0)=-1<0 and f(4)=3>0. Thus, we have the inequality f(0)<0<f(4). By Bolzano's theorem, there exists some c∈[0,4] such that f(c)=0.
12+18=30 so together they have $30.00 in all.

the denominator cannot be zero, because the division by zero is not defined, therefore:
![\begin{gathered} x^2-9=0 \\ \text{Solving for x:} \\ x^2=9 \\ \sqrt[]{x^2}=\sqrt[]{9} \\ x=\pm3 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%5E2-9%3D0%20%5C%5C%20%5Ctext%7BSolving%20for%20x%3A%7D%20%5C%5C%20x%5E2%3D9%20%5C%5C%20%5Csqrt%5B%5D%7Bx%5E2%7D%3D%5Csqrt%5B%5D%7B9%7D%20%5C%5C%20x%3D%5Cpm3%20%5Cend%7Bgathered%7D)
Therefore the domain of (f o g)(x) is: