Answer:
The second ramp needs to have 25°.
Step-by-step explanation:
Required ramp angle for driving the car from the ground = 35°.
First ramp angle = 15°
Therefore, second ramp angle equals required ramp angle minus first ramp angle, which is = 35° - 15° = 20°
The 20° ramp angle will make the total ramp angle to be equal to 35°.
That is 15° + 20° = 35°
0,0 and 5,4
Now subtract
m=4/5
y=4/5x
STEP-BY-STEP SOLUTION:
Let's solve this problem step-by-step.
As posters are generally rectangular in shape, we will establish the formula for the area of a rectangle which we will be using as displayed below:
Area = height × width
Now let's find the area of the postwr using the above formula.
Height = 2 feet
Width = 0.7 feet
Area = height × width
Area = 2 × 0.7
Area = 1.4 square feet
ANSWER:
Therefore, the answer is:
The area of the poster is 1.4 square feet.
Please mark as brainliest if you found this helpful! <3
Thank you : )
Well I am going to guess and i don't know if it right but 156.25ml
Answer:
The students should request an examination with 5 examiners.
Step-by-step explanation:
Let <em>X</em> denote the event that the student has an “on” day, and let <em>Y</em> denote the
denote the event that he passes the examination. Then,

The events (
) follows a Binomial distribution with probability of success 0.80 and the events (
) follows a Binomial distribution with probability of success 0.40.
It is provided that the student believes that he is twice as likely to have an off day as he is to have an on day. Then,

Then,

⇒

Then,

Compute the probability that the students passes if request an examination with 3 examiners as follows:

![=[\sum\limits^{3}_{x=2}{{3\choose x}(0.80)^{x}(1-0.80)^{3-x}}]\times\frac{2}{3}+[\sum\limits^{3}_{x=2}{{3\choose x}(0.40)^{3}(1-0.40)^{3-x}}]\times\frac{1}{3}](https://tex.z-dn.net/?f=%3D%5B%5Csum%5Climits%5E%7B3%7D_%7Bx%3D2%7D%7B%7B3%5Cchoose%20x%7D%280.80%29%5E%7Bx%7D%281-0.80%29%5E%7B3-x%7D%7D%5D%5Ctimes%5Cfrac%7B2%7D%7B3%7D%2B%5B%5Csum%5Climits%5E%7B3%7D_%7Bx%3D2%7D%7B%7B3%5Cchoose%20x%7D%280.40%29%5E%7B3%7D%281-0.40%29%5E%7B3-x%7D%7D%5D%5Ctimes%5Cfrac%7B1%7D%7B3%7D)

The probability that the students passes if request an examination with 3 examiners is 0.715.
Compute the probability that the students passes if request an examination with 5 examiners as follows:

![=[\sum\limits^{5}_{x=3}{{5\choose x}(0.80)^{x}(1-0.80)^{5-x}}]\times\frac{2}{3}+[\sum\limits^{5}_{x=3}{{5\choose x}(0.40)^{x}(1-0.40)^{5-x}}]\times\frac{1}{3}](https://tex.z-dn.net/?f=%3D%5B%5Csum%5Climits%5E%7B5%7D_%7Bx%3D3%7D%7B%7B5%5Cchoose%20x%7D%280.80%29%5E%7Bx%7D%281-0.80%29%5E%7B5-x%7D%7D%5D%5Ctimes%5Cfrac%7B2%7D%7B3%7D%2B%5B%5Csum%5Climits%5E%7B5%7D_%7Bx%3D3%7D%7B%7B5%5Cchoose%20x%7D%280.40%29%5E%7Bx%7D%281-0.40%29%5E%7B5-x%7D%7D%5D%5Ctimes%5Cfrac%7B1%7D%7B3%7D)

The probability that the students passes if request an examination with 5 examiners is 0.734.
As the probability of passing is more in case of 5 examiners, the students should request an examination with 5 examiners.