350x300=105000m squared
1km=1000m
So, 105000=105km squared
Answer:
Let Perimeter of Square be P
Let Length of Side be S
P = 4 x S
Step-by-step explanation:
Answer:
sure, !whats the question?
Step-by-step explanation:
Complete Question
A milling process has an upper specification of 1.68 millimeters and a lower specification of 1.52 millimeters. A sample of parts had a mean of 1.6 millimeters with a standard deviation of 0.03 millimeters. what standard deviation will be needed to achieve a process capability index f 2.0?
Answer:
The value required is
Step-by-step explanation:
From the question we are told that
The upper specification is 
The lower specification is
The sample mean is
The standard deviation is 
Generally the capability index in mathematically represented as
![Cpk = min[ \frac{USL - \mu }{ 3 * \sigma } , \frac{\mu - LSL }{ 3 * \sigma } ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%20%5Cfrac%7BUSL%20-%20%20%5Cmu%20%7D%7B%203%20%2A%20%20%5Csigma%20%7D%20%20%2C%20%20%5Cfrac%7B%5Cmu%20-%20LSL%20%7D%7B%203%20%2A%20%20%5Csigma%20%7D%20%5D)
Now what min means is that the value of CPk is the minimum between the value is the bracket
substituting value given in the question
![Cpk = min[ \frac{1.68 - 1.6 }{ 3 * 0.03 } , \frac{1.60 - 1.52 }{ 3 * 0.03} ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%20%5Cfrac%7B1.68%20-%20%201.6%20%7D%7B%203%20%2A%20%200.03%20%7D%20%20%2C%20%20%5Cfrac%7B1.60%20-%20%201.52%20%7D%7B%203%20%2A%20%200.03%7D%20%5D)
=> ![Cpk = min[ 0.88 , 0.88 ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%200.88%20%2C%200.88%20%20%5D)
So

Now from the question we are asked to evaluated the value of standard deviation that will produce a capability index of 2
Now let assuming that

So

=> 
=> 
So

=> 
Hence
![Cpk = min[ 2, 2 ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%202%2C%202%20%5D)
So

So
is the value of standard deviation required
Answer: 
Step-by-step explanation:
Based on the information provided, you know that the dimensions of the water tank John buys are:

Then, in order to find the expression that represents the volume of the water tank, you need to multiply those dimensions.
You must remember the Product of powers property, which states that:

Therefore, applying this property, you get that the expression that represents the volume of the water tank is:
