Answer:
x+2x+x+10
Step-by-step explanation:
Company A= x
Company B =2x
Company C =x+10
complementary angles add up to 90°, so therefore we know that ∡A + ∡B = 90°, and also they are in a ratio of 3:6.
![\bf \cfrac{A}{B}=\cfrac{3}{6}\implies \cfrac{A}{B}=\cfrac{1}{2}\implies 2A=\boxed{B} \\\\[-0.35em] ~\dotfill\\\\ A+B=90\implies A+\boxed{2A}=90\implies 3A=90\\\\\\ A=\cfrac{90}{3}\implies \blacktriangleright A=30 \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ 2(30)=B\implies \blacktriangleright 60=B \blacktriangleleft](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7BA%7D%7BB%7D%3D%5Ccfrac%7B3%7D%7B6%7D%5Cimplies%20%5Ccfrac%7BA%7D%7BB%7D%3D%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%202A%3D%5Cboxed%7BB%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A~%5Cdotfill%5C%5C%5C%5C%0AA%2BB%3D90%5Cimplies%20A%2B%5Cboxed%7B2A%7D%3D90%5Cimplies%203A%3D90%5C%5C%5C%5C%5C%5C%20A%3D%5Ccfrac%7B90%7D%7B3%7D%5Cimplies%20%5Cblacktriangleright%20A%3D30%20%5Cblacktriangleleft%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A2%2830%29%3DB%5Cimplies%20%5Cblacktriangleright%2060%3DB%20%5Cblacktriangleleft)
<span>, y+2 = (x^2/2) - 2sin(y)
so we are taking the derivative y in respect to x so we have
dy/dx use chain rule on y
so y' = 2x/2 - 2cos(y)*y'
</span><span>Now rearrange it to solve for y'
y' = 2x/2 - 2cos(y)*y'
0 = x - 2cos(y)y' - y'
- x = 2cos(y)y' - y'
-x = y'(2cos(y) - 1)
-x/(2cos(y) - 1) = y'
</span><span>we know when f(2) = 0 so thus y = 0
so when
f'(2) = -2/(2cos(0)-1)
</span><span>2/2 = 1
</span><span>f'(2) = -2/(2cos(0)-1)
cos(0) = 1
thus
f'(2) = -2/(2(1)-1)
= -2/-1
= 2
f'(2) = 2
</span>
Answer:
c
Step-by-step explanation: