Sorry if i am wrong but it's 40
3,6
ωФω
∴∵∴∵∴∵∴∵∴∵∴∵∴∵∴∵∴∵∴∵∴∵∴∵∴∵∴∵∴∵∴∵∴∵∴
Answer:
Let X the random variable that represent the delivery times of a population, and for this case we know the distribution for X is given by:
Where
and
Since the distribution of X is normal then we know that the distribution for the sample mean
is given by:
And we have;


Step-by-step explanation:
Assuming this question: The delivery times for all food orders at a fast-food restaurant during the lunch hour are normally distributed with a mean of 14.7 minutes and a standard deviation of 3.7 minutes. Let R be the mean delivery time for a random sample of 40 orders at this restaurant. Calculate the mean and standard deviation of
Round your answers to two decimal places.
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the delivery times of a population, and for this case we know the distribution for X is given by:
Where
and
Since the distribution of X is normal then we know that the distribution for the sample mean
is given by:
And we have;


Answer:
- increase the sample size
- choose students from different grade levels
- choose every fourth student in all language arts classes
Your welcome :]
Answer:
Expected time is 15 hours for him to get to safety.
Step-by-step explanation:
We define X as the time that this miner would get to safety.
We define Y as the door he chooses initially.
P(Y= 1) = P(Y=2)=P(Y=3) = 1/3
We have E[X|Y=1] = 3
E[X|Y] = 5 hours + E[X}
E[X|Y] = 7 hours + E[X]
Then we have
E[X] = 1/3(3 + 5 + E[X] + 7 + E[X])
We cross multiply
3*E[X] = (15 + 2E[x])
3E[X] - 2E[X] = 15
E[X] = 15
So the time it would take to get him to safety is 15 hours