Answer:
u may need more like a calculator
Step-by-step explanation:
Answer: The last one.
Step-by-step explanation:
Answer:
x ≤6
Step-by-step explanation:
no more than means you can have 6 or less
x ≤6
Not of Bernoulli type, but still linear.

There's no need to find an integrating factor, since the left hand side already represents a derivative:
![\dfrac{\mathrm d}{\mathrm dx}[(1+x^2)y]=(1+x^2)\dfrac{\mathrm dy}{\mathrm dx}+2xy](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5B%281%2Bx%5E2%29y%5D%3D%281%2Bx%5E2%29%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%2B2xy)
So, you have
![\dfrac{\mathrm d}{\mathrm dx}[(1+x^2)y]=4x^2](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5B%281%2Bx%5E2%29y%5D%3D4x%5E2)
and integrating both sides with respect to

yields


the answer is 120.00 dollars