It is 100 times more than 0.8 and 10 times more is 8. to find it out u have to go 2 places to the left and u will get 100
28.26 cause it is trust me
Equivalent expressions are expressions that have the same value, and can be used interchangeably.
The result of the sum
is ![4x\sqrt[3]{2y} + 8x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=4x%5Csqrt%5B3%5D%7B2y%7D%20%20%2B%208x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
The expression is given as:
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29)
Rewrite the expression as:
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 2 (\sqrt[3]{2^4x^3y}) + 4 (\sqrt[3]{3^3 \times 2x^6y^5})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29%20%3D%202%20%28%5Csqrt%5B3%5D%7B2%5E4x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B3%5E3%20%5Ctimes%202x%5E6y%5E5%7D%29)
Evaluate the roots
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 2 (2x\sqrt[3]{2y}) + 4 (3x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29%20%3D%202%20%282x%5Csqrt%5B3%5D%7B2y%7D%29%20%20%2B%204%20%283x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
Open the brackets
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 4x\sqrt[3]{2y} + 12x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29%20%3D%204x%5Csqrt%5B3%5D%7B2y%7D%20%20%2B%2012x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
The above expression cannot be further simplified.
Hence, the result of the sum
is ![4x\sqrt[3]{2y} + 8x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=4x%5Csqrt%5B3%5D%7B2y%7D%20%20%2B%208x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
Read more about equivalent expressions at:
brainly.com/question/2972832
Synthetic division:
3 | 3 11 2 -7 61
. | 9 60 186 537
- - - - - - - - - - - - - - - - - - - -
. | 3 20 62 179 598
which translates to

i.e. you're left with a remainder of 598.
Answer:
Denominator
x = 12
Step-by-step explanation:
Let x be the denominator of the fraction at point y.
Given:
Point X is at 2/3 on a number line from 0.
On the same line, point y is the same point from 0.
Numerator of the fraction at point y is 8.
We need to find the denominator of the fraction at point y.
Solution:
From the above statement the distance from 0 to point X and 0 to point Y is same, so point X is equal to Y.

By cross multiplication.



Therefore, the denominator of the fraction at point y is 12.