Answer:
Bicarbonate ion, HCO3- (which has a similar charge to chloride ions) also follow sodium ions into the blood. Also, potassium ions, K+ are transported into the nephron so some chloride ions and bicarbonate ions remains in the nephron to balance the charge.
Explanation:
Sodium is the primary positively charged electrolyte in extracellular fluid. Most of the solute reabsorbed in the proximal tubule is in the form of sodium bicarbonate and sodium chloride. Water is also reabsorbed in order to balance osmotic pressure
When sodium ions are reabsorbed into the blood, few of the substances that are transported with Na+ on the membrane facing the lumen of the tubules include Cl- ions, Ca2+ ions, amino acids, and glucose. Sodium is actively exchanged for K+ using ATP on the basal membrane.
In the distal convoluted tubule, K+ and H+ ions are selectively secreted into the filtrate, while Na+, Cl-, and HCO3- ions are reabsorbed to maintain pH and electrolyte balance in the blood.
Some chloride ions remains in the nephron to balance the charge of the secreted K+ ions and also due to the bicarbonate ions that are removed.
 
        
             
        
        
        
Answer:
The given cell represents an animal cell, in which the organelle labelled as 'G' is mitochondrion. Mitochondria are membrane-bound organelles and their inner membrane is folded inward to form finger-like structures or cristae.
The mitochondria are known as the powerhouse of the cells as they are site for biochemical reactions of respiration and energy production.
Thus, the correct answer is 'mitochondrion.'
 
        
             
        
        
        
The limbic system is mostly related to emotional behaviours
        
             
        
        
        
<span>adding a unit to move a susceptible group enough to prevent metabolism is known as shifting.
These phenomena happen especially for liposoluble organism circulating in blood like drugs an hormones.
these molecules circulating blood can be divided into two forms : 
The free-form: which is the active part, it circulates freely in the blood, but are easily metabolised.
The bound form: it can be bound to other molecules from the organisms depending on its affinity like proteins (albumin, glycoproteins). this form is not active but is prevented from metabolism.
Competition for bounding proteins can happen between two drugs for example. If they have a different degree of affinity for proteins, then the most affine will displace the less affine from the protein and bound it, and that is call shifting</span>