Find out what number times it's self equals the number you need to find the square root of and that's the square root
Options
The circle at the new location has _____________ the original circle.
- the same center as
- twice the circumference of
- half the radius of
- the same area as
Answer:
the same area as
Step-by-step explanation:
When a circle is translated and reflected, the center of the circle will change; however, its area, circumference, radius and diameter remain the same.
This is so because, translation and reflection only affect the positioning of the circle not the size.
Considering the above analysis, we can conclude that option d answers the question correctly.
Answer:
- vertical scaling by a factor of 1/3 (compression)
- reflection over the y-axis
- horizontal scaling by a factor of 3 (expansion)
- translation left 1 unit
- translation up 3 units
Step-by-step explanation:
These are the transformations of interest:
g(x) = k·f(x) . . . . . vertical scaling (expansion) by a factor of k
g(x) = f(x) +k . . . . vertical translation by k units (upward)
g(x) = f(x/k) . . . . . horizontal expansion by a factor of k. When k < 0, the function is also reflected over the y-axis
g(x) = f(x-k) . . . . . horizontal translation to the right by k units
__
Here, we have ...
g(x) = 1/3f(-1/3(x+1)) +3
The vertical and horizontal transformations can be applied in either order, since neither affects the other. If we work left-to-right through the expression for g(x), we can see these transformations have been applied:
- vertical scaling by a factor of 1/3 (compression) . . . 1/3f(x)
- reflection over the y-axis . . . 1/3f(-x)
- horizontal scaling by a factor of 3 (expansion) . . . 1/3f(-1/3x)
- translation left 1 unit . . . 1/3f(-1/3(x+1))
- translation up 3 units . . . 1/3f(-1/3(x+1)) +3
_____
<em>Additional comment</em>
The "working" is a matter of matching the form of g(x) to the forms of the different transformations. It is a pattern-matching problem.
The horizontal transformations could also be described as ...
- translation right 1/3 unit . . . f(x -1/3)
- reflection over y and expansion by a factor of 3 . . . f(-1/3x -1/3)
The initial translation in this scenario would be reflected to a translation left 1/3 unit, then the horizontal expansion would turn that into a translation left 1 unit, as described above. Order matters.
Is there a picture to go along with this??
Answer:
A. 6y
Step-by-step explanation:
The profit formula is: total earnings- total expenses. In this case the 145 has a minus sign, which indicates that these are Debra's total expenses. Then, 6y represents total revenue. You can also identify that this is the answer because revenues depend on babysitting hours, which in this case, is represented by the variable "y".