The equation 3y = x + 1 would graph a line parallel to 3y = x + 5 ⇒ 1st
Step-by-step explanation:
Parallel lines have same slopes and different y-intercepts
To find which equation would graph a line parallel to 3y = x + 5
1. Put the equation in the form of y = mx + c
2. m is the slope of the line and c is the y-intercept
3. Look for the equation which has the same values of m and different
values of c
∵ 3y = x + 5
- Divide each term of the equation by 3 to put the equation in the
form of y = mx + c
∴ y =
x + 
∴ m = 
∴ c = 
The first answer:
∵ 3y = x + 1
- Divide each term of the equation by 3
∴ y =
x + 
∴ m = 
∴ c = 
∵ The two equations have same slope m = 
∵ The two equations have different y-intercepts c = 
and c = 
∴ 3y = x + 5 and 3y = x + 1 represent two parallel lines
The equation 3y = x + 1 would graph a line parallel to 3y = x + 5
Learn more:
You can learn more about slope of a line in brainly.com/question/12954015
#LearnwithBrainly
It is C, "What type of paper are most greeting cards made with."
For this case we have the following equation:

Deriving we have:

We match zero:

We clear the value of x:

Then, we substitute the value of x in the equation of the parabola:

Thus, the vertex of the parabola is the ordered pair:
Answer:
The vertice is:
Answer:
C
Step-by-step explanation:
This is because using the formula of area for shapes, you get this equation
A=2(wl+hl+hw)=2·(4·6+4·6+4·4)=128