1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hjlf
3 years ago
14

BRAINLIESTTT ASAP! PLEASE HELP ME :) Simplify (9k^6 + 8k^4 – 6k^2)(4k^2 – 5)

Mathematics
2 answers:
Phoenix [80]3 years ago
7 0

Answer:

\large \boxed{36k^{8} - 13k^{6} - 64k^{4} + 30k^{2}}

Step-by-step explanation:

(9k⁶ + 8k⁴ - 6k²)(4k² - 5)

The easiest method is probably to use long multiplication.

9k⁶ + 8k⁴ - 6k²

<u>4k² - 5</u>

36k⁸ + 32k⁶ - 24k⁴

<u>         -  45k⁶ - 40k⁴ + 30k²</u>

36k⁸ -  13k⁶ - 64k⁴ + 30k²

\text{The product of the polynomials is $\large \boxed{\mathbf{36k^{8} - 13k^{6} - 64k^{4} + 30k^{2}}}$}

IgorC [24]3 years ago
3 0

Answer:

\displaystyle 30k^2 - 64k^4 - 13k^6 + 36k^8

Step-by-step explanation:

\displaystyle 30k^2 - 64k^4 - 13k^6 + 36k^8 = -24k^4 + 32k^6 + 32k^8 + 30k^2 - 40k^4 - 45k^6

I am joyous to assist you anytime.

You might be interested in
Which trinomial(s) can be factored as (x + p)(a +9), where p and q are positive?
Umnica [9.8K]

Answer:

  • D. x² + 5x + 6

Step-by-step explanation:

Trinomials can be factored as (x + p)(x + q), where both p and q are positive,

when both b and c are positive in:

  • ax² + bx + c

<u>One option is correct:</u>

  • x² + 5x + 6
3 0
3 years ago
Please help me asap. Got stuck with this question
Temka [501]

Answer:

Step-by-step explanation:

a.\\\frac{d}{dx}(\frac{-1}{1+x^2} )=\frac{d}{dx} [-1(1+x^2)^{-1}]=-1(-1)(1+x^2)^{-2}(2x)=\frac{2x}{(1+x^2)^2 }\\

b.

put 1+x²=u

2x dx=du

when x=0,u=1

when x=2,u=1+2²=5

\int\limits^5_1 {\frac{1}{u}} \, du= ln |u| ,1 \to 5=ln5-ln1=ln 5-0=ln 5

6 0
4 years ago
-3 5x X+2
nevsk [136]

Answer:

the optional answer is A

Step-by-step explanation:

the reason y it A because all of the others doesn't add up to the correct amout

3 0
3 years ago
Find an explicit solution of the given initial-value problem.dy/dx = ye^x^2, y(3) = 1.
tamaranim1 [39]

Answer:

y=exp(\int\limits^x_4 {e^{-t^{2} } } \, dt)

Step-by-step explanation:

This is a separable equation with an initial value i.e. y(3)=1.

Take y from right hand side and divide to left hand side ;Take dx from left hand side and multiply to right hand side:

\frac{dy}{y} =e^{-x^{2} }dx

Take t as a dummy variable, integrate both sides with respect to "t" and substituting x=t (e.g. dx=dt):

\int\limits^x_3 {\frac{1}{y} } \, \frac{dy}{dt} dt=\int\limits^x_3 {e^{-t^{2} } } dt

Integrate on both sides:

ln(y(t))\left \{ {{t=x} \atop {t=3}} \right. =\int\limits^x_3 {e^{-t^{2} } } \, dt

Use initial condition i.e. y(3) = 1:

ln(y(x))-(ln1)=\int\limits^x_3 {e^{-t^{2} } } \, dt\\ln(y(x))=\int\limits^x_3 {e^{-t^{2} } } \, dt\\

Taking exponents on both sides to remove "ln":

y=exp (\int\limits^x_3 {e^{-t^{2} } } \, dt)

7 0
3 years ago
Find the equation of the linear function represented by the table below in slope- intercept form. X o 1 2 3 4 у -5 1 7 13 19​
podryga [215]

Answer:

4x+4

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Zia is 8 years younger than twice his sister Sahsa's age. Zia is 32 years old.
    10·1 answer
  • 3. Why can the numerator and denominator of a rational expression be divided by their common factors? What conditions must be pl
    9·1 answer
  • Simplify √80 - 2√45​
    9·1 answer
  • The work of a student to solve a set of equations is shown:
    11·1 answer
  • The District Commissioner levies a fine of 200 bags of cowries for the crime, yet the messengers collect 250 bags from the villa
    6·1 answer
  • Im giving out brainliest ;)
    5·2 answers
  • How do am I suppose to do this I need help
    11·1 answer
  • I neep help!!! what is the answer???/
    12·1 answer
  • Given g(x)=−2x2+1, find the indicated values:g(-4)
    9·1 answer
  • How can you find the area or perimeter of a trapezoid, rhombus, or kite?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!