(f+g)(x) = 8x+2
(f-g)(x) = 4x-6
Step-by-step explanation:
Given

we have to find
<u>a. (f+g)(x)</u>

<u>b. (f-g)(x)</u>

Hence,
(f+g)(x) = 8x+2
(f-g)(x) = 4x-6
Keywords: Functions, Operations on Functions
Learn more about functions at:
#LearnwithBrainly
Answer:
Step-by-step explanation:
Use the formula Sum = (a + L)*n/2
The tricky part is n. That's the number of terms between 1 and 99 inclusive.
n = 99 -1 + 1 = 99
n = 99
a = 1
L = 99
Sum = (1 + 99)*99 / 2
Sum = (100)*99/2
Sum = 4950
Answer:
The statement is false
Step-by-step explanation:
we know that
if the triangle is a right triangle
then
the triangle must satisfy the Pythagoras Theorem

we have



substitute



therefore
Is not a right triangle
The statement is false
Answer:
![f^{-1}(x)=\sqrt[3]{x}-6](https://tex.z-dn.net/?f=f%5E%7B-1%7D%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D-6)
Step-by-step explanation:



![\sqrt[3]{x}=y+6](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%3Dy%2B6)
![\sqrt[3]{x}-6=y](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D-6%3Dy)
The coefficient of determination can be found using the following formula:
![r^2=\mleft(\frac{n(\sum ^{}_{}xy)-(\sum ^{}_{}x)(\sum ^{}_{}y)}{\sqrt[]{(n\sum ^{}_{}x^2-(\sum ^{}_{}x)^2)(n\sum ^{}_{}y^2-(\sum ^{}_{}y)^2}^{}}\mright)^2](https://tex.z-dn.net/?f=r%5E2%3D%5Cmleft%28%5Cfrac%7Bn%28%5Csum%20%5E%7B%7D_%7B%7Dxy%29-%28%5Csum%20%5E%7B%7D_%7B%7Dx%29%28%5Csum%20%5E%7B%7D_%7B%7Dy%29%7D%7B%5Csqrt%5B%5D%7B%28n%5Csum%20%5E%7B%7D_%7B%7Dx%5E2-%28%5Csum%20%5E%7B%7D_%7B%7Dx%29%5E2%29%28n%5Csum%20%5E%7B%7D_%7B%7Dy%5E2-%28%5Csum%20%5E%7B%7D_%7B%7Dy%29%5E2%7D%5E%7B%7D%7D%5Cmright%29%5E2)
Using a Statistics calculator or an online tool to work with the data we were given, we get
So the best aproximation of r² is 0.861