The point that the graphs of f and g have in common are (1,0)
<h3>How to get the points?</h3>
The given functions are:
f(x) = log₂x
and
g(x) = log₁₀x
We know that logarithm of 1 is always zero.
This means that irrespective of the base, the y-values of both functions will be equal to 0 at x=1
Therefore the point the graphs of f and g have in common is (1,0).
Learn more about graph on:
brainly.com/question/19040584
#SPJ1
Answer:


Step-by-step explanation:
The given system is:
4x-3y=8
5x-2y=-11
We make x the subject in the top equation to get:

Plug this expression for x in the bottom equation to get

We expand to obtain

Multiply through by 4

Group similar terms



This means


hhshshshhshshhshshshshshshshdjgjkkhdgtkdhdtukkfyitlfikdgjkdturuidturkurykiktduktdukdtutduiidtuidtuidtuuidt
Find the area and volume of the trapezoids first
Let the side of the garden alone (without walkway) be x.
Then the area of the garden alone is x^2.
The walkway is made up as follows:
1) four rectangles of width 2 feet and length x, and
2) four squares, each of area 2^2 square feet.
The total walkway area is thus x^2 + 4(2^2) + 4(x*2).
We want to find the dimensions of the garden. To do this, we need to find the value of x.
Let's sum up the garden dimensions and the walkway dimensions:
x^2 + 4(2^2) + 4(x*2) = 196 sq ft
x^2 + 16 + 8x = 196 sq ft
x^2 + 8x - 180 = 0
(x-10(x+18) = 0
x=10 or x=-18. We must discard x=-18, since the side length can't be negative. We are left with x = 10 feet.
The garden dimensions are (10 feet)^2, or 100 square feet.