P(most favorable outcome) = 1 -(0.03 +0.16 -0.01) = 0.82
_____
"repair fails" includes the "infection and failure" case, as does "infection". By adding the probability of "repair fails" and "infection", we count the "infection and failure" case twice. So, we have to subtract the probability of "infection and failure" from the sum of "repaire fails" and "infection" in order to count each bad outcome only once.
The probability of a good outcome is the complement of the probability of a bad outcome.
4/x+10
(4 divided by x + 10)
Answer:
The numerator factors to

The denomenator factors to

FGHI
Step-by-step explanation:
The square FGHI needs to be created into a reflection for true congruence of the figure thus transformed across the axis.
FGHI's co-ordinates' signs are to be reversed for reflection thus coordinates:
2,-5
4,-5
2,-7
4,-7
are made into
-2,5
-4,5
-2,7
-4,7
Answer:
<u>Perimeter</u>:
= 58 m (approximate)
= 58.2066 or 58.21 m (exact)
<u>Area:</u>
= 208 m² (approximate)
= 210.0006 or 210 m² (exact)
Step-by-step explanation:
Given the following dimensions of a rectangle:
length (L) =
meters
width (W) =
meters
The formula for solving the perimeter of a rectangle is:
P = 2(L + W) or 2L + 2W
The formula for solving the area of a rectangle is:
A = L × W
<h2>Approximate Forms:</h2>
In order to determine the approximate perimeter, we must determine the perfect square that is close to the given dimensions.
13² = 169
14² = 196
15² = 225
16² = 256
Among the perfect squares provided, 16² = 256 is close to 252 (inside the given radical for the length), and 13² = 169 (inside the given radical for the width). We can use these values to approximate the perimeter and the area of the rectangle.
P = 2(L + W)
P = 2(13 + 16)
P = 58 m (approximate)
A = L × W
A = 13 × 16
A = 208 m² (approximate)
<h2>Exact Forms:</h2>
L =
meters = 15.8745 meters
W =
meters = 13.2288 meters
P = 2(L + W)
P = 2(15.8745 + 13.2288)
P = 2(29.1033)
P = 58.2066 or 58.21 m
A = L × W
A = 15.8745 × 13.2288
A = 210.0006 or 210 m²