Answer:
3(x-2)(x+5)
Step-by-step explanation:
1. Factor out common term 3
3(x^2 +3x-10)
2. Factor (x^2 +3x-10)
3(x-2)(x+5)
-12=4x-y
(-8=6x-y)-1
-12=4x-y
8=-6x+y
-4=-2x
/-2 /-2
2=x
Y=6(2)+8
Y=20
(2,20)
The length of the KN is 4.4
Step-by-step explanation:
We know from Pythagoras theorem
In a right angle ΔLMN
Base² + perpendicular² = hypotenuse
²
From the properties of triangle we also know that altitudes are ⊥ on the sides they fall.
Hence ∠LKM = ∠NKM = 90
°
Given values-
LM=12
LK=10
Let KN be “s”
⇒LN= LK + KN
⇒LN= 10+x eq 1
Coming to the Δ LKM
⇒LK²+MK²= LM²
⇒MK²= 12²-10²
⇒MK²= 44 eq 2
Now in Δ MKN
⇒MK²+ KN²= MN²
⇒44+s²= MN² eq 3
In Δ LMN
⇒LM²+MN²= LN²
Using the values of MN² and LN² from the previous equations
⇒12² + 44+s²= (10+s)
²
⇒144+44+s²= 100+s²+20s
⇒188+s²= 100+s²+20s cancelling the common term “s²”
⇒20s= 188-100
∴ s= 4.4
Hence the value of KN is 4.4
You have not given us any of the steps that Ricardo took to simplify the
expression, and you also haven't given us the list of choices that includes
the description of his mistake, so you're batting O for two so far.
Other than those minor details, the question is intriguing, and it certainly
draws me in.
If Ricardo made a mistake in simplifying that expression, I'm going to say that
it was most likely in the process of removing the parentheses in the middle.
Now you understand that this is all guess-work, because of all the stuff that you
left out when you copied the question, but I think he probably forgot that the 3x
operates on everything inside the parentheses.
He probably wrote that 3x (x-3) is
either 3x² - 3
or x - 9x .
In reality, when properly simplified,
3x (x - 3) = 3x² - 9x .