We need to notice that SSSS does not exist as a method to prove that parallelograms are congruent
Counterexample
As we can see we have the same measure of the side of the intern angles of the figures are different therefore we can't use SSSS to prove congruence
Answer:
Step-by-step explanation:
2,4 ,10,12,19,36.5,40
Answer:
16n^2+40n+25
Step-by-step explanation:
Answer:
See below ~
Step-by-step explanation:
<u>Given</u>
- Maitri and Aabhas do a work in 12 hours
- Aabhas and Kavya do the work in 15 hours
- Kavya and Maitri do the work in 20 hours
<u>Solving</u>
- Take Maitri, Aabhas, and Kavya to be x, y, z respectively
- <u>x + y = 12</u> (1)
- <u>y + z = 15</u> (2)
- <u>x + z = 20</u> (3)
<u>Take Equation 1 and rewrite it so that it is equal to x.</u>
<u>Take Equation 2 and rewrite it so that it is equal to z.</u>
<u>Now, substitute these values in Equation 3.</u>
- x + z = 20
- 12 - y + 15 - y = 20
- -2y + 27 = 20
- 2y = 7
- y = 7/2 = <u>3.5 hours [Aabhas]</u>
<u></u>
<u>Substitute the value of y in Equation 1.</u>
- x + 3.5 = 12
- x = <u>8.5 hours [Maitri]</u>
<u>Substitute the value of y in Equation 2.</u>
- 3.5 + z = 15
- z = <u>11.5 hours [Kavya]</u>
<u></u>
<u>Add the values of x, y, and z together.</u>
- x + y + z
- 8.5 + 3.5 + 11.5
- 12 + 11.5
- <u>23.5 hours [together]</u>