Hello,
1
.65 + 0.20(65) = 65 + 13 = 78(65 - 60) / 65 = 5/65 = 0.0769 x 100 = 7.69 rounds to 7.7 % decrease compared to the 65 pizza's sold yesterday
2.
I posted a file to help you on this question!
3. <span>Find principal by using the formula </span><span>I=P⋅i⋅t</span><span>, where </span>I<span> is interest, </span>P<span> is total principal, </span>i<span> is rate of interest per year, and </span>t<span> is total time in years.
</span>
So basically your answer is
600.I truley hope this helps.
Have a good day!
-Jurgen
see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>
Answer:
i think it is B hope it help
Step-by-step explanation:
SR because any point on a perpendicular bisecting line is equidistant from the ends of the bisected segment.
Hello,
First we work out the equations:
x + y =62 will be the first equation.
2x= y +13 is the second equation.
We can first rewrite the second equation as 2x – y =13.
So we have:
x + y = 62
2x –y =13
KEEP IN MIND: With y being positive in one of the equations and negative in the other, we can combine the equations to quickly eliminate y and solve for x.
x + y = 62
+2x –y =13
3x = 75 divide both sides by 3 to get x.
x = 25
Now that we have x we can substitute the value for x, 25.
25 + y = 62 we can subtract 25 from both sides to get y.
y = 62- 25
y = 37
2(25) = 37 + 13
Therefore,
50 = 50
Have a amazing day.