it equals <span>(−<span>12</span>)</span> because <span><span>cos<span>(<span>60∘</span>)</span></span>=<span>12</span></span>
Explanation:
The reference angle for <span>240∘</span> is <span>60∘</span> (since <span><span>240∘</span>=<span>180∘</span>+<span>60∘</span></span>)
<span>60∘</span> is an angle of one of the standard triangles with
<span><span>cos<span>(<span>60∘</span>)</span></span>=<span>12</span></span>
<span>240∘</span> is in the 3rd quadrant so (either by CAST or noting that the "x-side" of the associate triangle is negative)
<span><span>cos<span>(<span>240∘</span>)</span></span>=−<span>cos<span>(<span>60∘</span>)</span></span></span>
<span><span>cos<span>(<span>240∘</span>)</span></span>=−<span><span>12</span></span></span>
1/2=4/8. 3 and 4/8+ 3 and 3/8 is 6 and 7/8.
As, Opposite side of Special trapezoid is equal.So, it will be a Parallelogram.
ab=c d= 19 units
Height of Trapezoid = 14 units
Area of Trapezoid = 
So, Area of Trapezoid = 266 square units
You, can use the formula for finding the area of parallelogram,which is = Base on which perpendicular is drawn × Length of Altitude
= 19 × 14
= 266 square units
The direct variation equation is:
d=kt
where d is the distance that the giraffe travels
k is the constant of variation
and t is time
Now we are told that the giraffe can travel 800 ft in 20 seconds, so we can solve for the constant of variation (k)
800=k(20) divide both sides by 20
k=40-------------and the units are ft per sec
So now we can write
d=40t
ck
d=40t
800ft=40*20 ft
800 ft= 800 ft
Hope this helps!
-------------------------------------------------------------------------------------
Formula
-------------------------------------------------------------------------------------
a² + b² = c²
-------------------------------------------------------------------------------------
Find the missing leg.
-------------------------------------------------------------------------------------
15² + b² = 18²
b² = 18² - 15²
b² = 99
b = √99
b = 9.95 cm
-------------------------------------------------------------------------------------
Answer: 9.95 cm
-------------------------------------------------------------------------------------