Check the picture below.
so then, the perimeter of that hexagon will just be the sum of all its 6 sides, or namely 3⅖ + 3⅖ + 3⅖ + 3⅖ + 3⅖ + 3⅖, or just 6( 3⅖ ).
![\bf \textit{area of a regular polygon}\\\\ A=\cfrac{1}{2}ap~~ \begin{cases} a=apothem\\ p=perimeter\\[-0.5em] \hrulefill\\ a=3\\ p=6\left(3\frac{2}{5} \right) \end{cases}\implies A=\cfrac{1}{2}(3)\left[ 6\left(3\frac{2}{5} \right) \right]\implies A=\cfrac{1}{2}(3)\left[ 6\left(\cfrac{17}{5} \right) \right] \\\\\\ A=\cfrac{1}{2}(3)\left(\cfrac{102}{5} \right)\implies A=\cfrac{1}{2}\left( \cfrac{306}{5} \right)\implies A=\cfrac{153}{5}\implies A=30\frac{3}{5}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7Dap~~%20%5Cbegin%7Bcases%7D%20a%3Dapothem%5C%5C%20p%3Dperimeter%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D3%5C%5C%20p%3D6%5Cleft%283%5Cfrac%7B2%7D%7B5%7D%20%5Cright%29%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283%29%5Cleft%5B%206%5Cleft%283%5Cfrac%7B2%7D%7B5%7D%20%5Cright%29%20%5Cright%5D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283%29%5Cleft%5B%206%5Cleft%28%5Ccfrac%7B17%7D%7B5%7D%20%5Cright%29%20%5Cright%5D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283%29%5Cleft%28%5Ccfrac%7B102%7D%7B5%7D%20%5Cright%29%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%5Cleft%28%20%5Ccfrac%7B306%7D%7B5%7D%20%5Cright%29%5Cimplies%20A%3D%5Ccfrac%7B153%7D%7B5%7D%5Cimplies%20A%3D30%5Cfrac%7B3%7D%7B5%7D)
Answer:
A. 29 units
Step-by-step explanation:
Answer:
Step-by-step explanation:
AS we can see the lines are parallel so
2 ( 4x - 3) + 7(x + 3) = 180° ( being so - interior angles)
8x - 6° + 7x + 21° = 180°
15x + 15° = 180°
15x = 180° - 15°
15x = 165°
x = 165° / 15
Therefore x = 11°
Now
2 ( 4x - 3) = 2 ( 4 * 11° - 3°) = 2 ( 44 - 3)° = 2* 41 = 82°
7(x + 3 ) = 7 ( 11° + 3°) = 7 * 14 = 98°
Use the Pythagorean Theorem:
a^2 + b^2= c^2
a= one side= 68 mi
b= second side= 80 mi
c= hypotenuse= Greenville to Columbia mi
a^2 + b^2= c^2
68^2 + 80^2= c^2
square each number
4,624 + 6,400= c^2
11,024= c^2
take square root of both sides
104.995 mi= c
ANSWER: The distance from Greenville to Columbia is 104.995 miles (rounded to 105 miles).
Hope this helps! :)
Answer:
Step-by-step explanation:
p + 3d = 9.50
3p + 4d = 19.75
-3p - 9d = -28.50
3p + 4d = 19.75
-5d = -8.25
d= $1.65 drinks
p + 3(1.65) = 9.50
p + 4.95 = 9.50
p = $4.55 popcorn