Answer:
The area of the square adjacent to the third side of the triangle is 11 units²
Step-by-step explanation:
We are given the area of two squares, one being 33 units² the other 44 units². A square is present with all sides being equal, and hence the length of the square present with an area of 33 units² say, should be x² = 33 - if x = the length of one side. Let's make it so that this side belongs to the side of the triangle, to our convenience,
x² = 33,
x =
.... this is the length of the square, but also a leg of the triangle. Let's calculate the length of the square present with an area of 44 units². This would also be the hypotenuse of the triangle.
x² = 44,
x =
.... applying pythagorean theorem we should receive the length of a side of the unknown square area. By taking this length to the power of two, we can calculate the square's area, and hence get our solution.
Let x = the length of the side of the unknown square's area -
=
+
,
x =
... And
squared is 11, making the area of this square 11 units².
Answer:
Answer is y =400(2x)
Step-by-step explanation:
Answer:
8x + 12 = 12 + 8x
0 = 0
Step-by-step explanation:
Distribute then simplify
Answer:851
Step-by-step explanation:
Answer:
8
Step-by-step explanation:
Two different approaches:
<u>Method 1</u>
Apply radical rule √(ab) = √a√b to simplify the radicals:
√98 = √(49 x 2) = √49√2 = 7√2
√50 = √(25 x 2) = √25√2 = 5√2
Therefore, (√98 - √50)² = (7√2 - 5√2)²
= (2√2)²
= 4 x 2
= 8
<u>Method 2</u>
Use the perfect square formula: (a - b)² = a² - 2ab + b²
where a = √98 and b = √50
So (√98 - √50)² = (√98)² - 2√98√50 + (√50)²
= 98 - 2√98√50 + 50
= 148 - 2√98√50
Apply radical rule √(ab) = √a√b to simplify radicals:
√98 = √(49 x 2) = √49√2 = 7√2
√50 = √(25 x 2) = √25√2 = 5√2
Therefore, 148 - 2√98√50 = 148 - (2 × 7√2 × 5√2)
= 148 - 140
= 8