Answer: option d. C (0,3), D (0,5).
Justification:
1) The x - coordinates of the vertices A and B are shown in the diagrama, They are both - 4, so the new vertices C and D must be in a line parallel to y = - 4.
2) The y-coordinates of the vertices A and B are also shown in the diagrama. They are equal to 3 and 5 respectively.
3) We can see that the new points C and D must be over a parallel line to y = - 4 and that their distance to the points A and B has to be the same distance of the point R and S to U and T.
That distance is 4, so the line may be y = - 7 or y = 0.
4) If the line is y = 7 the points C and D would have coordinates (-7,3) and (-7,5), but this points are not among the options.
5) If the line is y = 0 the points C and D would have coordinates (0, 3) and (0,5), which is precisely the points of the option d. That is the answer.
Y = 5x - 2
9y = -2x + 10
9y = 3x + 8
y = (3/9)x + 8/9
Answer:
see explanation
Step-by-step explanation:
Assuming you are factoring the expression
Given
4y² + 26y + 30 ← factor out 2 from each term
= 2(2y² + 13y + 15) ← factor the quadratic
Consider the factors of the product of the coefficient of the y² term and the constant term which sum to give the coefficient of the y- term.
product = 2 × 15 = 30 and sum = 13
the factors are 10 and 3
Use these factors to split the y- term
2y² + 10y + 3y + 15 ( factor the first/second and third/fourth terms )
= 2y(y + 5) + 3(y + 5) ← factor out (y + 5) from each term
= (y + 5)(2y + 3)
Thus
4y² + 26y + 30
= 2(y + 5)(2y + 3)
Answer:
The answer is 25g^R4
Step-by-step explanation:
When you solve the equation, it becomes 25g^R4, it doesn't result in a whole number.