1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prohojiy [21]
3 years ago
12

Which logarithmic function is shown in the graph?

Mathematics
1 answer:
mario62 [17]3 years ago
4 0

Answer:

h(x) = log2(x – 1) + 2

Step-by-step explanation:

This would be the answer due to the plus two moving it up 2

You might be interested in
What is a quartic function with only the two real zeroes given?<br><br> x=5 and x=1
Paha777 [63]

The answer is

Y=x^4-6x^3 +6x^2 -6x+5

7 0
3 years ago
Read 2 more answers
Solve for x and y. Round answers to the nearest tenth.
kifflom [539]
X/9 = 30/12
x = 30/12*9 = 22.5

y/7 = 30/12
y = 30/12*7 = 17.5
4 0
3 years ago
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
A rectangular tile has a decorative pattern of 3 equal-sized squares, each of which is divided into 2 same-sized triangles. If M
Andrew [12]
72 triangles will be displayed I believe....

All you do is multiply 2 times 36 and you get 72. Because there are 2 triangles in one square, so 2*36.

Hope this Helps!
8 0
4 years ago
Read 2 more answers
Find the area os the rectangle TOUR
ss7ja [257]

Answer:

The answer to your question is 80 units²

Step-by-step explanation:

Data

R = (-6, -6)

U = (6, -2)

O = (4, 4)

T = (-8, 0)

Process

1.- Find the distance between R and U, and the points U and O

dRU = \sqrt{6 + 6)^{2} + (-2 + 6)^{2}}

dRU = \sqrt{12^{2} + 4^{2}}

dRU = \sqrt{144 + 16}

dRU = \sqrt{160} = 12.65

dUO = \sqrt{(4 - 6)^{2} + (4 + 2)^{2}}

dUO = \sqrt{(-2)^{2} + (6)^{2}}

dUO = \sqrt{4 + 36}

dUO = \sqrt{40} = 6.32

2.- Find the Area

Area = base x height

-Substitution

Area = 12.65 x 6.32

- Result

Area = 80 units²

8 0
3 years ago
Other questions:
  • A 45N girl sits on a 8N bench. How much work is done on the bench? Remember that work = force × distance. What is the work?​
    15·2 answers
  • Two trains, Train A and Train B, weigh a total of 407 tons. Train A is heavier than Train B. The difference of their weight is 2
    7·1 answer
  • Given the sets A = {7, 11, 14, 17, 21} and B = {0, 11, 15, 17, 34}, the set A∩B is given by:
    10·2 answers
  • How many sides does a regular polygon have if one of it's interior angles measure 162?
    7·2 answers
  • Find the volume of a pyramid with a square base, where the perimeter of the base is
    7·1 answer
  • The number of a checking account is also known as a.account number b.checking number c. Bank number d.routing number
    10·1 answer
  • If r=4cm and h= 4cm, what is the volume of the cone
    8·1 answer
  • Mia the scientist is tracking daily temperature changes for study on parakeet migration she records 10° in the morning and 50° i
    8·1 answer
  • Helpppppp due in 5 mins pls math
    12·1 answer
  • REASONING A drone that costs $129.50 is discounted 40%. The next month, the sale price is discounted an additional 60%. Is the d
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!