The answer for the following question is mentioned below.
<u><em>Therefore no of moles present in the gas are 1.12 moles</em></u>
Explanation:
Given:
Pressure of gas (P) = 1.2 atm
Volume of a gas (V) = 50.0 liters
Temperature (T) =650 K
To calculate:
no of moles present in the gas (n)
We know;
According to the ideal gas equation;
We know;
<u>P × V = n × R × T
</u>
where,
P represents pressure of the gas
V represents volume of the gas
n represents no of the moles of a gas
R represents the universal gas constant
where the value of R is 0.0821 L atm mole^{-1} K^-1
T represents the temperature of the gas
As we have to calculate the no of moles of the gas;
n = 
n = \frac{1.2*50.0}{0.0821*650}
n = \frac{60}{53.365}
n = 1.12 moles
<u><em>Therefore no of moles present in the gas are 1.12 moles</em></u>
Answer:
Explanation:
Using at least three sentences,, explain the four stages involved in genetic engineering/gene cloning.
Stage 1: Isolation of the target gene
Stage 2: Insertation of the target gene
Stage 3: Introduction of the vector into a host
Stage 4: Amplification of the target gene by the host cell and screening
Answer:
C) They are not made of matter.
Explanation:
Case in which protons are inside of neutrons doesn't exist.
Answer:
its 0.163 g
Explanation:
From the total pressure and the vapour pressure of water we can calculate the partial pressure of O2
PO 2 =P t −P H 2 O
= 760 − 22.4
= 737.6 mmHg
From the ideal gas equation we write.
W= RT/PVM = (0.0821Latm/Kmol)(273+24)K(0.974atm)(0.128L)(32.0g/mol/) =0.163g