Answer:
We accept H₀
Step-by-step explanation:
Normal Distribution
size sample n = 69
sample mean 18.94
standard deviation 8.3
Is a one tailed-test to the left we are traying of find out is we have enough evidence to say that the mean is less than 20 min.
1.-Test hypothesis H₀ ⇒ μ₀ = 20
Alternative hypothesis Hₐ ⇒ μ₀ < 20
2.- Critical value
for α = 0.1 we find from z Table
z(c) = - 1.28
3.-We compute z(s)
z(s) = [ ( μ - μ₀ ) / (σ/√n) ⇒ z(s) = [( 18.94 - 20 )*√69)/8.3]
z(s) = ( -1.06)*8.31/8.3
z(s) = - 1.061
4.- We compare
z(c) and z(s) -1.28 > -1.061
Then z(c) > z(s)
z(s) in inside acceptance region so we accept H₀
17-2(6-4)(7-3)-7
17-2(2)(4)-7
17-2(8)-7
17-16-7
1-7
-6
Answer:
![r = 3.74cm](https://tex.z-dn.net/?f=r%20%3D%203.74cm)
Step-by-step explanation:
Given
Hemisphere
![Radius = 7cm](https://tex.z-dn.net/?f=Radius%20%3D%207cm)
Cone
![Height = 49m](https://tex.z-dn.net/?f=Height%20%3D%2049m)
Required
Determine the radius of the cone
First, we calculate the volume (V1) of the hemisphere.
![V_1 = \frac{2}{3}\pi r^3](https://tex.z-dn.net/?f=V_1%20%3D%20%5Cfrac%7B2%7D%7B3%7D%5Cpi%20r%5E3)
Substitute 7 for r
![V_1 = \frac{2}{3}\pi * 7^3](https://tex.z-dn.net/?f=V_1%20%3D%20%5Cfrac%7B2%7D%7B3%7D%5Cpi%20%2A%207%5E3)
![V_1 = \frac{2}{3}\pi * 343](https://tex.z-dn.net/?f=V_1%20%3D%20%5Cfrac%7B2%7D%7B3%7D%5Cpi%20%2A%20343)
![V_1 = \frac{686}{3}\pi](https://tex.z-dn.net/?f=V_1%20%3D%20%5Cfrac%7B686%7D%7B3%7D%5Cpi)
Volume (V2) of a cone is:
![V_2 = \frac{1}{3}\pi r^2h](https://tex.z-dn.net/?f=V_2%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20r%5E2h)
Because the lead is cast into a cone, then they have the same volume.
So, we have:
![\frac{686}{3}\pi = \frac{1}{3}\pi r^2h](https://tex.z-dn.net/?f=%5Cfrac%7B686%7D%7B3%7D%5Cpi%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20r%5E2h)
![686 = r^2h](https://tex.z-dn.net/?f=686%20%3D%20%20r%5E2h)
Substitute 49 for h
![686 = r^2 * 49](https://tex.z-dn.net/?f=686%20%3D%20%20r%5E2%20%2A%2049)
Divide both sides by 49
![r^2 = \frac{686}{49}](https://tex.z-dn.net/?f=r%5E2%20%3D%20%5Cfrac%7B686%7D%7B49%7D)
![r^2 = 14](https://tex.z-dn.net/?f=r%5E2%20%3D%2014)
![r = \sqrt{14](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%7B14)
![r = 3.74cm](https://tex.z-dn.net/?f=r%20%3D%203.74cm)
<em>Hence, the radius of the cone is 3.74cm</em>
Answer: ![57,512,581.63miles^2](https://tex.z-dn.net/?f=57%2C512%2C581.63miles%5E2)
Step-by-step explanation:
Substitute the value of the radius of the Earth into the formula given in the problem, where r is the radius, to obtain the surface area of the Earth:
![S=4(3.14)r^2\\S=4(3.14)(3,960miles)^2\\S=196,960,896miles^2](https://tex.z-dn.net/?f=S%3D4%283.14%29r%5E2%5C%5CS%3D4%283.14%29%283%2C960miles%29%5E2%5C%5CS%3D196%2C960%2C896miles%5E2)
The problem says that the dry land forms 29.2% of the Earth’s surface, therefore, multiply the surface area by ![\frac{29.2}{100}=0.292](https://tex.z-dn.net/?f=%5Cfrac%7B29.2%7D%7B100%7D%3D0.292)
Threfore, the area of dry land is the following:
![S_{land}=(0.292)(196,960,896miles^2)=57,512,581.63miles^2](https://tex.z-dn.net/?f=S_%7Bland%7D%3D%280.292%29%28196%2C960%2C896miles%5E2%29%3D57%2C512%2C581.63miles%5E2)