F(g(x)) = [(-7x-8)/(x-1) - 8} / [(-7x - 8)/(x-1) + 7] =
[(-7x - 8 - 8(x-1)) / (x-1)] / [(-7x - 8 + 7(x-1)) / (x-1)] = (-15x) / (-15) = x.
g(f(x)) = [-7*(x-8)/(x+7) - 8] / [(x-8)/(x+7) - 1] =
[(-7x + 56 -8*(x+7)) / (x+7)] / [(x - 8 - (x + 7)) / (x+7)] = (-15x) / (-15) = x.
So since f(g(x)) = g(f(x)) = x we can conclude that f and g are inverses.
*see attachment for the missing figure
Answer:
Angle ADE = 45°
Angle DAE = 30°
Angle DEA = 105°
Step-by-step explanation:
Since lines AD and BC are parallel, therefore:
Given that angle Angle CBE = 45°,
Angle ADE = Angle CBE (alternate interior angles are congruent)
Angle ADE = 45° (Substitution)
Angle DAE = Angle ACB (Alternate Interior Angles are congruent)
Angle ACB = 180 - 150 (angles on a straight line theorem)
Angle ACB = 30°
Since angle DAE = angle ACB, therefore:
Angle DAE = 30°
Angle DEA = 180 - (angle ADE + angle DAE) (Sum of angles in a triangle)
Angle DEA = 180 - (45 + 30) (Substitution)
Angle DEA = 180 - 75
Angle DEA = 105°
Slope-intercept form: y = mx + b
(m is the slope, b is the y-intercept or the y value when x = 0 --> (0, y) or the point where the line crosses through the y-axis)
For lines to be parallel, they have to have the same slope.
y = 6x + 6 The slope of this line is 6, so the parallel line's slope is also 6.
Now that you know m = 6, substitute/plug it into the equation:
y = mx + b Plug in 6 for "m" in the equation
y = 6x + b To find "b", plug in the point (20, 1) into the equation
1 = 6(20) + b
1 = 120 + b Subtract 120 on both sides to get "b" by itself
1 - 120 = 120 - 120 + b
-119 = b Now that you know b = -119, plug it into the equation
y = 6x - 119
152.6315 is because If you dived 870 by 5.7 it will be that.
2,640,000. Because the 4 is in the ten thousands place and should be rounded up