Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Trig Derivatives
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
Trig Integration
Logarithmic Integration
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution.</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Trig Derivative]:

- [Bounds of Integration] Change:
![\displaystyle [\frac{1}{2}, 1]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5B%5Cfrac%7B1%7D%7B2%7D%2C%201%5D)
<u>Step 3: Integrate Pt. 2</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] U-Substitution:

- [Integral] Logarithmic Integration:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e
a) When x = -2, g(x) = 5.
b) When x = -4, g(x) = 7.
c) When g(x) = 6, x = -3
d) When g(x) = -1, x = 4
3 x 8 intense of 8 x 3
hope this helps!
-SummerBreaker