Answer:
The component form of the vector P'P is 
Step-by-step explanation:
The component form of the vector that translates P(4, 5) to P'(-3, 7), is given as follows;
The x-component of the vector = The difference in the x-values of the point P' and the point P = -3 - 4 = -7
The y-component of the vector = The difference in the y-values of the point P' and the point P = 7 - 5 = 2
The component form of the vector P'P = 
Step-by-step explanation:
<u>Step 1: Find the volume of the original pyramid</u>
<u />



<u>Step 2: Find the volume of the cut off</u>
<u />


<u>Step 3: Find the percent that still remains</u>
<u />




Answer: 99.2%
The cost will be 9 for 1 pencial
Answer:
Solution
p = {-3, 1}
Step-by-step explanation:
Simplifying
p2 + 2p + -3 = 0
Reorder the terms:
-3 + 2p + p2 = 0
Solving
-3 + 2p + p2 = 0
Solving for variable 'p'.
Factor a trinomial.
(-3 + -1p)(1 + -1p) = 0
Subproblem 1
Set the factor '(-3 + -1p)' equal to zero and attempt to solve:
Simplifying
-3 + -1p = 0
Solving
-3 + -1p = 0
Move all terms containing p to the left, all other terms to the right.
Add '3' to each side of the equation.
-3 + 3 + -1p = 0 + 3
Combine like terms: -3 + 3 = 0
0 + -1p = 0 + 3
-1p = 0 + 3
Combine like terms: 0 + 3 = 3
-1p = 3
Divide each side by '-1'.
p = -3
Simplifying
p = -3
Subproblem 2
Set the factor '(1 + -1p)' equal to zero and attempt to solve:
Simplifying
1 + -1p = 0
Solving
1 + -1p = 0
Move all terms containing p to the left, all other terms to the right.
Add '-1' to each side of the equation.
1 + -1 + -1p = 0 + -1
Combine like terms: 1 + -1 = 0
0 + -1p = 0 + -1
-1p = 0 + -1
Combine like terms: 0 + -1 = -1
-1p = -1
Divide each side by '-1'.
p = 1
Simplifying
p = 1
Solution
p = {-3, 1}
2.845-5,028=x
x= -5,025.155