Answer:
45.367 cm
Step-by-step explanation:
Approximating to a more number of decimal places gives a better estimation of the exact value.
For 45.367 cm, we approximated to three decimal places or five significant figures.
For 43.43 cm, the approximation is done to four decimal places.
Therefore the measurement 45.367cm is more precise because it has a relatively smaller error.
Note that
Answer:
Mary's risk premium is $0.9375
Step-by-step explanation:
Mary's utility function,
Mary's initial wealth = $100
The gamble has a 50% probability of raising her wealth to $115 and a 50% probability of lowering it to $77
Expected wealth of Mary, 
= (0.5 * $115) + (0.5 * $77)
= 57.5 + 38.5
= $96
The expected value of Mary's wealth is $96
Calculate the expected utility (EU) of Mary:-
![E_u = [0.5 * U(115)] + [0.5 * U(77)]\\E_u = [0.5 * 115^{0.5}] + [0.5 * 77^{0.5}]\\E_u = 5.36 + 4.39\\E_u = \$ 9.75](https://tex.z-dn.net/?f=E_u%20%3D%20%5B0.5%20%2A%20U%28115%29%5D%20%2B%20%5B0.5%20%2A%20U%2877%29%5D%5C%5CE_u%20%3D%20%5B0.5%20%2A%20115%5E%7B0.5%7D%5D%20%2B%20%5B0.5%20%2A%2077%5E%7B0.5%7D%5D%5C%5CE_u%20%3D%205.36%20%2B%204.39%5C%5CE_u%20%3D%20%5C%24%209.75)
The expected utility of Mary is $9.75
Mary will be willing to pay an amount P as risk premium to avoid taking the risk, where
U(EW - P) is equal to Mary's expected utility from the risky gamble.
U(EW - P) = EU
U(94 - P) = 9.63
Square root (94 - P) = 9.63
If Mary's risk premium is P, the expected utility will be given by the formula:

Mary's risk premium is $0.9375
What is the mean of 7,5,6,5,4,4,,8,6,6,7,4,5,5,6,6
Alex
The mean is 5.6 and the median and mode are 6