Answer:

Step-by-step explanation:
Co-ordinates of point A = ( -7 , 1 )
Co-ordinates of point M = ( -2 , 2 )
Let the co-ordinates of point B be ( x , y )
A ( -7 , 1 )
( x1 , y1 )
B ( x , y )
( x2 , y2 )
Now,
Midpoint = 
⇒
Finding the value of x :
⇒
Do cross multiplication
⇒
⇒
⇒
⇒
Now, finding the value of y
⇒
Do cross multiplication
⇒
⇒
⇒
⇒
Hence, The co-ordinates of point B = ( 3 , 3 )
Hope I helped!
Best regards!
~
He can either measure the third side length, apply the Pythagorean theorem to find the height of the triangle, and then calculate the area, or he can find the measure of the included angle between the known side lengths and use trigonometry to express the height of the triangle and then determine the
area of the triangle
Let x=ab=ac, and y=bc, and z=ad.
Since the perimeter of the triangle abc is 36, you have:
Perimeter of abc = 36
ab + ac + bc = 36
x + x + y = 36
(eq. 1) 2x + y = 36
The triangle is isosceles (it has two sides with equal length: ab and ac). The line perpendicular to the third side (bc) from the opposite vertex (a), divides that third side into two equal halves: the point d is the middle point of bc. This is a property of isosceles triangles, which is easily shown by similarity.
Hence, we have that bd = dc = bc/2 = y/2 (remember we called bc = y).
The perimeter of the triangle abd is 30:
Permiter of abd = 30
ab + bd + ad = 30
x + y/2 + z =30
(eq. 2) 2x + y + 2z = 60
So, we have two equations on x, y and z:
(eq.1) 2x + y = 36
(eq.2) 2x + y + 2z = 60
Substitute 2x + y by 36 from (eq.1) in (eq.2):
(eq.2') 36 + 2z = 60
And solve for z:
36 + 2z = 60 => 2z = 60 - 36 => 2z = 24 => z = 12
The measure of ad is 12.
If you prefer a less algebraic reasoning:
- The perimeter of abd is half the perimeter of abc plus the length of ad (since you have "cut" the triangle abc in two halves to obtain the triangle abd).
- Then, ad is the difference between the perimeter of abd and half the perimeter of abc:
ad = 30 - (36/2) = 30 - 18 = 12