No soy muy buena con álgebra pero te recomiendo esta app que se llama “Symbolab” donde solo tienes que escanear la tarea y te da la respuesta.
Polynomial with real coefficients always has even number of complex roots. We know that one of them is 2 + 5i so the second one will be 2 - 5i and:

Answer B.
I don’t know how to necessarily complete the tables but i know they are equivalent
1. 3(x-5)
3 (x) = 3x
3 (-5) = -15
that is the distributive property thus it equals
3x - 15
2. 3x - 15
they’re the same