Answer:
(A) ![A=\left[\begin{array}{ccc}10&20&40\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2620%2640%5Cend%7Barray%7D%5Cright%5D)
(B) ![B=\left[\begin{array}{ccc}11&22&44\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%2622%2644%5Cend%7Barray%7D%5Cright%5D)
(C) ![A+B=\left[\begin{array}{ccc}21&42&84\end{array}\right]](https://tex.z-dn.net/?f=A%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%2642%2684%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
The manager ordered 10 lb of tomatoes, 20 lb of zucchini, and 40 lb of onions from a local farmer one week.
(A)
Matrix <em>A</em> represents the amount of each item ordered. It is 1 × 3 matrix.
Then matrix <em>A</em> is:
![A=\left[\begin{array}{ccc}10&20&40\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2620%2640%5Cend%7Barray%7D%5Cright%5D)
(B)
Next week the manager increases the order of all the products by 10%.
Then the amount of new orders are:
Tomatoes ![=10\times [1+\frac{10}{100}]=10\times1.10=11](https://tex.z-dn.net/?f=%3D10%5Ctimes%20%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%3D10%5Ctimes1.10%3D11)
Zucchini ![=20\times [1+\frac{10}{100}]=20\times1.10=22](https://tex.z-dn.net/?f=%3D20%5Ctimes%20%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%3D20%5Ctimes1.10%3D22)
Onions ![=40\times [1+\frac{10}{100}]=40\times1.10=44](https://tex.z-dn.net/?f=%3D40%5Ctimes%20%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%3D40%5Ctimes1.10%3D44)
Th matrix <em>B</em> represents the amount of each order for the next week. Then matrix <em>B</em> is:
![B=\left[\begin{array}{ccc}11&22&44\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%2622%2644%5Cend%7Barray%7D%5Cright%5D)
(C)
Add the two matrix <em>A</em> and <em>B</em> as follows:
![A+B=\left[\begin{array}{ccc}10&20&40\end{array}\right]+\left[\begin{array}{ccc}11&22&44\end{array}\right]\\=\left[\begin{array}{ccc}(10+11)&(20+22)&(40+44)\end{array}\right]\\=\left[\begin{array}{ccc}21&42&84\end{array}\right]](https://tex.z-dn.net/?f=A%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2620%2640%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%2622%2644%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%2810%2B11%29%26%2820%2B22%29%26%2840%2B44%29%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%2642%2684%5Cend%7Barray%7D%5Cright%5D)
The entries of the matrix (<em>A</em> + <em>B</em>) represent the amount of tomatoes, zucchini and onions ordered for two weeks.
Answer:
400,000
Step-by-step explanation:
446 is the closest to 400 so 400,000
pls mark brainliest
Answer:
- 1.5 times
- bottle Y
- third bottle
Step-by-step explanation:
Insufficient dimensions are given to compute an exact volume of each geometry, so we have to assume that the volume is proportional to the product of base area and height. Then the relative volumes will be ...
bottle X: (6 in)(2 in)(1 in) = 12 in^3
bottle Y: (4 in)(3 in)(1.5 in) = 18 in^3
3rd bottle: (3 in)(6 in^2) = 18 in^3
That is, the relative volumes are ...
X : Y : 3rd = 12 : 18 : 18 = 1 : 1.5 : 1.5
The corresponding relative prices are ...
X : Y : 3rd = 9.96 : 14.40 : 13:20 = 1 : 1.446 : 1.325
__
A. Bottle Y has 1.5 times as much lotion as Bottle X.
__
B. Bottle Y is a better buy than Bottle X. (The price relative to X is less than the volume relative to X.)
__
C. The 3rd bottle is the best buy. For the same volume, the price of the 3rd bottle is less than that of Bottle Y.
_____
Note that the relative volume and price ratios are found by dividing all the numbers in the ratio sequence by the first number:
12 : 18 : 18 = (12/12) : (18/12) : (18/12)
9.96 : 14.40 : 13.20 = (9.96/9.96) : (14.40/9.96) : (13.20/9.96)
The answer is (x-1) (x^2-6x-4)