Answer:
A. Maximum point :(-2.4,37.014)
Minimum point: (2.4,-37.014).
Step-by-step explanation:
Given function
f(x)=
on interval ![\left[ -3, 3\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20-3%2C%203%5Cright%5D)
A. Maximum point (-2.4,37.014)
Minimum point (2.4,-37.014)
f(x)=![(-2.4)^5-10(-2.4)^3+9(-2.4)](https://tex.z-dn.net/?f=%28-2.4%29%5E5-10%28-2.4%29%5E3%2B9%28-2.4%29)
f(x)=-79.62624+138.24-21.6
f(x)=37.014
Put x= 2.4 then we get
f(x)= ![(2.4)^5-10(2.4)^3+9(2.4)](https://tex.z-dn.net/?f=%282.4%29%5E5-10%282.4%29%5E3%2B9%282.4%29)
f(x)=79.62624-138.24+21.6
f(x)=37.014
B. Maximum point (2.4,-37.014)
Minimum point (-2.4,37.014)
Put x= 2.4. Then we get
f(x)= -37.014
Put x=-2.4 then we get
f(x)= 37.014
C. Maximum point ( -1.4, 33.014)
Minimum point ( 1.4, -33.014)
Put x=-1.4 then we get
f(x)=![(-1.4)^5-10(-1.4)^3+9(1.4)](https://tex.z-dn.net/?f=%28-1.4%29%5E5-10%28-1.4%29%5E3%2B9%281.4%29)
f(x)=-38.94
Put x= 1.4 then we get
f(x)= 38.94
D. Maximum point ( -3,30)
Minimum point ( 3,-30)
Put x=3 then we get
f(x)= 243-270+27=0
Put x=-3 then we get
f(x)= -243+270-27=0
Hence , from option A,B,C and D we can see only option A is right answer.
The approximate values of the minimum point (2.4,-37.014) and maximum point (-2.4, 37.014) of the function f(x)=
on
.