The diagonals bisect each other
Which set of ordered pairs represents a function? {(0, 1), (1, 3), (1, 5), (2, 8)} {(0, 0), (1, 2), (2, 6), (2, 8)} {(0, 0), (0,
11111nata11111 [884]
Answer: {(0, 2), (1, 4), (2, 6), (3, 6)}
Step-by-step explanation:
For a relation to be considered a function, each x-value needs to have one corresponding y-value--it cannot have more than 1.
Since all the other sets of ordered pairs feature points with two x-values with different y-values, the set above is the only function of the provided options.
Rearrange the ODE as


Take

, so that

.
Supposing that

, we have

, from which it follows that


So we can write the ODE as

which is linear in

. Multiplying both sides by

, we have

![\dfrac{\mathrm d}{\mathrm dx}\bigg[e^{x^2}u\bigg]=x^3e^{x^2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5Be%5E%7Bx%5E2%7Du%5Cbigg%5D%3Dx%5E3e%5E%7Bx%5E2%7D)
Integrate both sides with respect to

:
![\displaystyle\int\frac{\mathrm d}{\mathrm dx}\bigg[e^{x^2}u\bigg]\,\mathrm dx=\int x^3e^{x^2}\,\mathrm dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5Be%5E%7Bx%5E2%7Du%5Cbigg%5D%5C%2C%5Cmathrm%20dx%3D%5Cint%20x%5E3e%5E%7Bx%5E2%7D%5C%2C%5Cmathrm%20dx)

Substitute

, so that

. Then

Integrate the right hand side by parts using



You should end up with



and provided that we restrict

, we can write
<u>We are given the equation:</u>
(a + b)! = a! + b!
<u>Testing the given equation</u>
In order to test it, we will let: a = 2 and b = 3
So, we can rewrite the equation as:
(2+3)! = 2! + 3!
5! = 2! + 3!
<em>We know that (5! = 120) , (2! = 2) and (3! = 6):</em>
120 = 2 + 6
We can see that LHS ≠ RHS,
So, we can say that the given equation is incorrect