Answer:
Answer is explained in the attached document
Step-by-step explanation:
Hessenberg matrix- it a special type of square matrix,there there are two subtypes of hessenberg matrix that is upper Hessenberg matrix and lower Hessenberg matrix.
upper Hessenberg matrix:- in this type of matrix zero entries below the first subdiagonal or in another words square matrix of n\times n is said to be in upper Hessenberg form if ai,j=0
for all i,j with i>j+1.and upper Hessenberg matrix is called unreduced if all subdiagonal entries are nonzero
lower Hessenberg matrix:- in this type of matrix zero entries upper the first subdiagonal,square matrix of n\times n is said to be in lower Hessenberg form if ai,j=0 for all i,j with j>i+1.and lower Hessenberg matrix is called unreduced if all subdiagonal entries are nonzero.
<span>The number of x-intercepts that appear on the graph of the function
</span>f(x)=(x-6)^2(x+2)^2 is two (2): x=6 (multiplicity 2) and x=-2 (multiplicity 2)
Solution
x-intercepts:
f(x)=0→(x-6)^2 (x+2)^2 =0
Using that: If a . b =0→a=0 or b=0; with a=(x-6)^2 and b=(x+2)^2
(x-6)^2=0
Solving for x. Square root both sides of the equation:
sqrt[ (x-6)^2] = sqrt(0)→x-6=0
Adding 6 both sides of the equation:
x-6+6=0+6→x=6 Multiplicity 2
(x+2)^2=0
Solving for x. Square root both sides of the equation:
sqrt[ (x+2)^2] = sqrt(0)→x+2=0
Subtracting 2 both sides of the equation:
x+2-2=0-2→x=-2 Multiplicity 2
1.57, divide two times pi (3.14)
Sarah has spent 7 first class tickets, and 6 coach tickets that totals for 13 people that took the trip.
$1040 * 7 = $7280
$140 * 6 = $840
$7280 + $840 = $8120 for Sarah's total budget she spent for 7 first class tickets and 6 coach tickets for 13 people that took the trip.
Answer:
7 first class tickets.
6 coach tickets.
Hope this helps!
<em>
</em><em>~ ShadowXReaper069</em>
-50 feet because you have to add 2 to 30 and since it is below sea level, it is a negative